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Hedge Fund Risk Factors and Value at Risk of Credit 
Trading Strategies 

 

Summary 

This paper analyzes the risk characteristics for various hedge fund strategies 

specializing in fixed income instruments.  Because fixed income hedge fund strategies 

have exceptionally high autocorrelations in reported returns and this is taken as 

evidence of return smoothing, we first develop a method to completely eliminate any 

order of serial correlation across a wide array of time series processes.  Once this is 

complete, we determine the underlying risk factors to the “true” hedge fund returns 

and examine the incremental benefit attained from using nonlinear payoffs relative to 

the more traditional linear factors.  For a great many of the hedge fund indices we find 

the strongest risk factor to be equivalent to a short put position on high-yield debt.  In 

general, we find a moderate benefit to using the nonlinear risk factors in terms of the 

ability to explain reported returns.  However, in some cases this fit is not stable even 

over the in-sample period.  Finally, we examine the benefit to using various factor 

structures for estimating the value-at-risk of the hedge funds.  We find, in general, that 

using nonlinear factors slightly increases the estimated downside risk levels of the 

hedge funds due to their option-like payoff structures.   

 



                                                                                                                                           1 

 
  

 

I.  Introduction 

The fact that many hedge fund returns exhibit extraordinary levels of serial correlation 

is now well-known and generally accepted as fact.  The effect of this serial correlation 

on hedge fund returns is to diminish the apparent risk of this asset class as the true 

day-to-day, week-to-week and month-to-month variability of returns is easily 

camouflaged within a haze of illiquidity, stale prices, averaged price quotes and 

managed performance reporting.1  Nevertheless, in spite of these difficulties large 

segments of the investment community have continually shifted funds into the hedge 

fund asset class.2  With their increasing prominence, potential investors need to be 

aware of the true risk underlying hedge fund returns. 

 

Several papers have examined the issue of serial correlation in reported hedge fund 

returns.  Basically, these papers can be divided into two camps.  On one side, attempts 

have been made to directly alter the reported returns themselves to moderate the 

influence of serial correlation.  Papers that have taken this approach include Brooks 

and Kat (2001) and Kat and Lu (2002) and can be traced back to Geltner (1991, 1993) 

in the real estate literature.  Unfortunately, the method employed in these papers is 

rather ad-hoc and, in fact, sometimes fails to adequately remove the serial correlation 

that exists for hedge funds operating in the most illiquid markets.3 

 

The alternative, more econometrically rigorous, approach is to take the original hedge 

fund return series as given and attempt to modify the reported performance statistics 

such as the Sharpe ratio to control for the spurious serial correlation in reported 

returns.  Papers that use this alternative method include Lo (2002) and Getmansky, 

Lo, and Makarov (2003).  While this second method is theoretically appealing and can 

be of great benefit, some may still desire to examine the individual, period-by-period 

                                                 

1 Getmansky, Lo, and Makarov (2003) give an excellent overview and analysis of the potential sources 
of serial correlation in reported hedge fund returns. 
2 The September 2003 staff report to the SEC, “Implications of the Growth of Hedge Funds”, estimated 
that hedge fund assets have grown from $50 billion in 1993 to $592 billion in 2003. 
3 Many hedge funds returns exhibit significant higher-order serial correlation.  The current technology 
only acts to approximately remove the first-order serial correlation. 
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hedge fund returns.  Unfortunately, the approach advanced by these papers does not 

provide guidance on how to do this.   

 

While the exact method that one should use in order to remove the serial correlation 

from reported hedge fund returns depends upon the ultimate application, we believe 

that the first approach, suitably modified to remove any magnitude and any order of 

serial correlation, may prove more generally beneficial to those who wish to carefully 

analyze hedge fund performance.  For instance, many papers have attempted to map 

reported hedge fund returns onto a set of external factors in order to gain a better 

understanding of the true underlying risk level  (see, for example, Agarwal and Naik 

(2001, 2002) and Fung and Hsieh (2001b, 2002,)).  Ideally, we would want to work 

directly with the adjusted hedge fund returns that have already removed the effects of 

serial correlation when conducting this type of analysis.  Moreover, any attempt to 

subject hedge fund returns to a value-at-risk analysis would also wish to examine 

adjusted rather than reported hedge fund returns.4 

 

We have several purposes for this paper.  First, neither Agarwal and Naik (2001, 

2002) nor Fung and Hsieh (2001b, 2002) properly adjust the returns of their hedge 

funds to take into account return smoothing.  To the extent that smoothing does occur 

in reported individual hedge fund returns, the true realised volatility will exceed 

disclosed volatility and the underlying relation between the hedge fund returns and 

factor exposures will be obscured.  We take high-order autocorrelations in hedge fund 

returns as evidence of this smoothing and present a new methodology to completely 

eliminate any order of autocorrelation from reported returns to determine the “true” 

underlying returns for the hedge fund.  In general, our process will show that the true 

risk for many fixed income hedge fund strategies is at least 60 to 100 percent greater 

than that observed through reported returns.  Any methodology that does not properly 

adjust for smoothing will severely underestimate the true, underlying risk level.  We 

also believe that this process may have many applications beyond hedge fund 

research.   

 

                                                 

4 As we will later show, value-at-risk estimations that do not make this adjustment will underestimate 
the true risk underlying the hedge fund returns. 
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Second, we make use of the Agarwal and Naik (2001) stepwise regression framework 

to identify the underlying risk factors for the fixed income hedge funds.  We choose to 

focus on the fixed income style because the hedge funds in this sector appear to have 

the most extreme levels of serial correlation in reported returns.  In a closely related 

paper, Fung and Hsieh (2002) also examine the risk characteristics for five styles of 

fixed income hedge funds followed by HFR.  While our ultimate results are roughly 

consistent with that found in Fung and Hsieh (2002), we take a significantly different 

approach.5  In our stepwise regressions, we include well over 100 candidate risk 

factors and allow the statistical process to identify the relevant factors rather than a 

priori guesswork.  

 

Using the adjusted hedge fund returns, we attempt to identify the underlying risk 

factors for six fixed income styles:  Convertible Arbitrage, Fixed Income Arbitrage, 

Credit Trading, Distressed Securities,  Merger Arbitrage, and MultiProcess − Event 

Driven.6  For these hedge fund styles, we find alternative and, arguably, more 

reasonable risk factors than that identified in prior research.  For example, Mitchell 

and Pulvino (2001) make a convincing case that the strategies underlying merger 

arbitrage are akin to holding a short put position on the value-weighted CRSP index.  

In fact, this is close to our result.  We find merger arbitrage to be more closely 

explained by a short put position on high yield debt.  In fact, we repeatedly find the 

short-put position on high-yield debt to be one of the most important explanatory 

factors across many of the hedge fund styles. 

 

In addition to mapping hedge fund returns onto the underlying risk factors, we also 

examine the incremental benefit to using nonlinear payoffs as candidate exposures.  In 

general, we find limited evidence of nonlinearities for the fixed income hedge fund 

styles. 

 

Finally, the ultimate aim for mapping hedge fund returns onto factors is to use the 

underlying risk exposures to simulate future possible returns using historical datasets.  

                                                 

5 We use returns adjusted to remove serial correlation.  Fung and Hsieh (2002) do not make use of the 
stepwise regression approach to determine their risk factors.  Finally, in addition to the HFR indices, 
we also analyze the FRM, CSFB, Hennessee, and Zurich indices. 
6 Definitions for these hedge fund styles are given in Appendix A. 
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Specifically, we conduct a very simple value-at-risk analysis using the mappings and 

compare the estimations when nonlinear exposures are either included or excluded.  

First, we find that in some cases the underlying risk factors may change quite 

dramatically over time – even within sample – for some hedge fund styles.  We also 

find, as we would expect, that estimated downside risk exposures increase when we 

take into account nonlinearities. 

 

The structure for the paper is as follows.  In Section II, we will discuss the data used 

for this study – both the hedge fund and the factor returns.  In Section III, we will 

discuss the methodology to eliminate any order of autocorrelation from a given return 

series, to map the hedge fund returns to factor exposures and to conduct the  value-at-

risk analyses.  In Section IV, we will present the mapping results.  In Section V, we 

will examine the value-at-risk for the various hedge fund styles.  Finally, in Section 

VI, we will conclude with the overall findings and remaining issues of the paper. 

 

II.  Data                

To examine the fixed-income hedge funds, we use returns from various indices taken 

from FRM (the MSCI indices), HFR, CSFB, Hennessee, and Zurich over the period 

January, 1994 through December, 2001.  For clarity, we choose to work with the 

indices themselves rather than individual hedge fund returns.7  The specific styles and 

indices we have chosen to use are given in Table 1.8  We have chosen to confine our 

analysis to fixed-income styles in general as our methodology for unsmoothing 

returns is most relevant in this sector.  In addition, we will show that these hedge fund 

styles are quite correlated and have many common underlying risk exposures. 

 

Table 1 presents statistics on excess returns (to the U.S. T-bill) for the 21 hedge fund 

indices we will consider.  Each of the indices is grouped into its style category.  

Considering first the unadjusted excess returns, we can clearly see that the FRM index 

has the greatest return and reward to risk ratio in all cases.  In addition, we can see 

                                                 

7 For many individual hedge funds our method would be even more applicable as their serial 
correlation is even greater than that found at the index level. 
8 A complete description of the construction for all indices except FRM is given in Brooks and Kat 
(2001).  MSCI (2001) discusses construction of the FRM indices. 
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that for all styles with the possible exception of Merger Arbitrage that the reported 

returns are highly autocorrelated. 

 

To this point, only one simple methodology exists to attempt to adjust these 

autocorrelated returns to find the true, underlying returns.  This methodology can be 

traced back to Geltner (1991, 1993) in the real estate literature, and has been applied 

more recently by Brooks and Kat (2001) and Kat and Lu (2002) to hedge fund return 

series.  To unsmooth a given hedge fund return series, Brooks and Kat (2001) assume 

that the observed (smoothed) return, *
tr , of a hedge fund at time t may be expressed as 

a weighted average of the true underlying return at time t , tr , and the observed 

(smoothed) return at time t-1, *
1tr − : 

 *
tr   =  ( 1  −  α ) tr  +  α *

1tr −   .      (1) 

Given equation (1), simple algebraic manipulation allows us to determine the actual 

return with zero first order autocorrelation: 

 tr   =  
* *

1

1
t tr rα

α
−−

−
.                  (2)  

It can be shown that the return series, tr , will have the same mean as *
tr  and will have 

near zero first order autocorrelation.  The standard deviation of tr  will be greater than 

that for *
tr  if the first order autocorrelation autocorrelation of *

tr  is positive.  If the 

first order autocorrelation of *
tr  is negative then the standard deviation of tr  will be 

less than that for *
tr . 

 

Unfortunately, this adjustment process is intrinsically unsatisfying.  The difficulty 

with this methodology is that it is only strictly correct for an AR(1) process and it 

only acts to remove first order autocorrelation.  In fact, many of the hedge fund 

indices that we will consider have highly significant second order autocorrelation that 

will not be removed by using the process given in equation (2).  We will show a more 

general approach in Section III to completely eliminate any order of autocorrelation 

from many general processes.  For now, it will suffice to say that our methodology 

will have the same general effect as that found by Geltner (1991, 1993) and by Brooks 
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and Kat (2001) in that our adjustment reveals true risk for many of these hedge fund 

styles to be much greater than that reported.9   For adjusting the hedge fund returns, 

we successfully eliminated the first four autocorrelations.  Table 1 reveals that the 

smoothed hedge fund returns have a much higher standard deviation, in general, than 

does the original return series with a correspondingly lower information ratio.  In fact, 

in many cases we find an increase in risk of 60 to 100 percent. 

 

Table 2 gives the correlations among the different hedge fund indices.  We can 

quickly see that the correlations between hedge funds within the Convertible 

Arbitrage, Fixed Income Arbitrage, and Credit Trading strategies are much lower 

than within Distressed Securities, Merger Arbitrage, and MultiProcess – Event 

Driven.  We also see relatively high correlations across different styles – particularly 

between Credit Trading and Distressed Securities, Distressed Securities and 

MultiProcess – Event Driven, and also between Merger Arbitrage and MultiProcess – 

Event Driven. 

 

Table 3 and Table 4 present summary statistics for the candidate factors we will use to 

identify the relevant risk exposures of the hedge fund indices.  For this study, we have 

included 40 candidate factors that we label Index Factors.  In Table 3 we have 

included 11 equity factors, 19 bond indices, 3 commodity indices, 2 real estate 

indices, 2 currencies, as well as 4 miscellaneous factors (Lipper Mutual Funds, 

NYBOT Orange Juice, % Change in the VIX index, % Change in the VXN index).  

Most of these factors were taken directly from Datastream.  The VIX and VXN 

indices were taken from the CBOT website.10  In addition to the variables reported in 

Table 3, we also included various interest rates downloaded directly from Datastream.  

These are the U.S. Corporate Bond Moody’s Baa rate, the FHA Mortgage rate, the 

U.S. Swap 10 year rate, and the U.S. JPM Non-U.S. Govt bond rate. 

 

Table 4 gives details for the data taken directly from Ken French’s website.  These 

include the standard small minus big factor, high minus low, and momentum.  

                                                 

9 In fact, in many cases the risk levels we estimate using our process will be greater than that given by 
the Geltner (1991, 1993) and Brooks and Kat (2001) approach. 
10 The VXN data series does not begin until 1995.  To fill in the 1994 values, we regressed the VXN on 
the VIX index and then used the fitted values to estimate what the VXN might have been during 1994. 
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Definitions for each of these factors may be found at his website.  Note that the 

difference between the High factor and the Low factor is not the same as the value for 

the HML factor due to slightly different definitions in the construction of the series.  

In addition, industry factors were taken directly from Ken French’s site and included 

in Table 4.  We will label all factors taken from Ken French’s site, including industry 

factors as Ken French factors. 

 

A direct comparison of Table 1 with Table 3 reveals that the adjusted returns of the 

hedge funds have, in general, a risk level comparable to many of the bond indices.  

This is not surprising given that we are considering hedge funds that tend to operate in 

fixed income markets in the first place.  The fact that the risk level for adjusted hedge 

fund returns is relatively close to the risk levels of the indices gives us some comfort 

in the adjustment process that we use.  We should also note that with the exception of 

3 of the Lehman bond indices, none of the bond factors possess significantly positive 

first or second order autocorrelation.  This fact makes us question the validity of the 

original autocorrelation process we find in unadjusted hedge fund returns.  One final 

point can be made regarding the factors listed in Table 3.  Many of the factors have 

experienced much greater standard deviations recently than they did during the mid 

1990s.  This is particularly the case for the equity indices which have experienced 

increases in risk up to 4 times.  For example, the monthly standard deviation of excess 

NASDAQ returns has increased from 3.329 percent during 1994 – 1995 to 12.558 

percent during 2000 – 2001.  We also find similar increases in magnitude for the UBS 

Warburg bond indices.  Later, when we map the hedge fund returns onto the potential 

underlying risk factors, we will need to control for this relative increase in risk. 

 

Table 4 presents similar measures as Table 3 for the Ken French factors.  As we found 

in Table 3, we find marked increases in risk for many of the candidate factors during 

the most recent two years.  In addition, as others have documented the size effect and 

the value / growth effect have lain dormant during this time period.  Finally, we 

should note that the risk underlying the momentum effect has increased by nearly 6 

times over the period of this study. 

 

As is clearly evident, we consider a very wide range of candidate risk factors and will 

make no prior assumptions regarding which should be the most important for 
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assessing the risk factors underlying our hedge fund indices.  If our initial 

assumptions regarding the most relevant risk factors are correct, then we should find 

these risk factors when we include a far greater array of candidate exposures.  If we 

do not find the risk factors we would expect, then either our initial assumptions are 

incorrect or we must question our methodological approach.  We are now ready to 

discuss the methodology used in this paper. 

 

III.  Methodology 
 

III.A.  Adjusting Reported Returns to Remove Autocorrelation 

 

We will assume the fund manager smooths returns in the following manner: 

 0,tr   =  ( 1  −  α ) ,m tr   +  0,β i t i
i

r −∑ ,     (3) 

where  ( 1  −  α )   =  iβ
i
∑ , 

0,tr  is the observed (reported) return at time t (with 0 adjustments to reported  

returns), 

,m tr   is the true underlying (unreported) return at time t (determined by making m  

adjustments to reported returns). 

 

Our objective is to determine the true underlying return by removing the 

autocorrelation structure in the original return series without making any assumptions 

regarding the actual time series properties of the underlying process.  We are 

implicitly assuming by this approach that the autocorrelations that arise in reported 

returns are entirely due to the smoothing behavior funds engage in when reporting 

results.  In fact, we will show that our method may be adopted to produce any desired 

level of autocorrelation at any lag and is not limited to simply eliminating all 

autocorrelations. 

 

III.A.1.  To Remove First Order Autocorrelation 
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Geltner’s method for removing or reducing first order autocorrelation is given in 

equation (2).  To completely eliminate first order autocorrelation, a simple 

modification to the adjustment process in equation (2) is required: 

 1,tr   =  0, 1 0, 1

11
t tr c r

c
−−

−
 ,       (4) 

where 1c  is a parameter that we will set to remove the first order autocorrelation in 

the return series given by 0,tr .  Note that the subscript, 0, indicates returns that have 

been adjusted 0 times.  The subscript, 1, for 1,tr  indicates one adjustment where the 

adjustment is given in equation (4).  This is slightly different from the notation in 

equation (1) and equation (2), but we feel the notation used in each section is most 

clear for the discussion in that section. 

 

Using the definition of true returns, 1,tr , given in equation (4) we may solve directly 

for the new first order autocorrelation: 

 1,1a   ≡  Corr [ 1,tr  , 1, 1tr − ]  =  
2

0,1 1 0,2 1 0,1

2
1 1 0,1

(1 )

1 2

a c a c a

c c a

 − + +
 

 + −
 

,  (5) 

where ,m na  is the nth autocorrelation made after m adjustments to returns. 

 

We may reset the autocorrelation given by equation (5) to any desired level, 1d .  The 

general solution for 1c  may be found by directly solving the second order polynomial.  

The general solution for 1c  is: 

 1c   =  
( ) ( ) ( )

( )

2 2
0,2 1 0,1 0,2 1 0,1 0,1 1

0,1 1

1 2 1 2 4

2

a d a a d a a d

a d

+ − ± + − − −

−
. (6) 

The solution given in equation (6) for 1c  will apply for any time series process that 

fulfills the following condition: 

 ( )2
0,1 1a d−  ≤  

( )2
0,2 1 0,11 2

4

a d a+ −
.     (7) 
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While it must remain for future work to determine the generality of the result given by 

equation (6), we were able to successfully remove first order autocorrelation for all 

100 different hedge fund indices we examined in work related to this project.  We 

were also successful for the 21 indices we examine in this paper.  Note that if we 

assume the underlying process is AR(1) and we wish to completely remove first order 

autocorrelation, we find 1c  to be: 

 1c   =  0,1a   or  1c   =  
0,1

1
a

. 

For more general processes, 1c  will be a complicated function of the parameters 

underlying the time series process.   

 

We may derive the variance of the new process, 1,tr : 

 Var [ 1,tr ]  = 
( )

( )

2
1 1 0,1

2
1

1 2

1

c c a

c

+ −

−
Var [ 0,tr ].     (8) 

Note that the variance of the adjusted (unsmoothed) returns will be greater than the 

variance of the original series if the parameter, 1c  is positive.  Since all of the hedge 

fund indices we consider have positive first order autocorrelation, the effect of this 

unsmoothing will be to increase the riskiness of returns. 

 

We may also determine the new correlation between any variable, x, and the new, 

adjusted return series, 1,tr : 

 
1, ,ρ

tr x   ≡  Corr [ 1,tr  , x ]  =  0, 0, 1, 1 ,

2
1 1 0,1

ρ ρ

1 2
t tr x r xc

c c a
−

−

+ −
,    (9) 

where 
0, ,ρ

tr x   ≡   Corr [ 0,tr  , x ]  and 
0, 1 ,ρ

tr x−
  ≡  Corr [ 0, 1tr −  , x ]. 

Note that, in general, the greater is the correlation between the original returns series 

and any other variable, x, the greater will be the correlation between 1,tr  and x.11 

                                                 

11 In tests not reported, this result was confirmed for the 21 hedge fund indices of this paper and their 
associated factors.  While not perfect, we found a near monotonic relation between correlations with 
unadjusted returns and correlations with our adjusted returns.  In addition, we found that factors 
statistically significant with the original series remained statistically significant with adjusted returns.  
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For simplicity we will now assume the objective is to completely remove first order 

autocorrelation.  That is, we will set 1d  to be equal to zero.  It is quite straightforward 

to modify the results that follow for a non-zero 1d . 

 

We may also derive the higher order autocorrelations with the adjusted process: 

 1,na   ≡  Corr [ 1,tr  , 1,t nr − ]  =  
2

0, 1 1 0, 1 0, 1

2
1 1 0,1

(1 ) ( )

1 2

n n na c c a a

c c a

− + + − +
 

 + −
 

.        (10) 

We will later make use of these new higher order autocorrelations on adjusted returns. 

 

Finally, we should comment on the implicit assumption we are making regarding the 

behavior of the fund manager if we make the adjustment as given in equation (4).  

Implicitly, we are assuming the relation between reported return, 0,tr , and the true 

return, 1,tr , is: 

 0,tr   =  ( 1 −  1c ) 1,tr   + 1c  0, 1tr − .                (11) 

This is easily achieved by a direct manipulation of equation (4). 

 

III.A.2.  To Remove the First and Second Order Autocorrelations 

 

The process demonstrated in Section III.A.1. was a straightforward extension of that 

proposed by Geltner (1991, 1993).  We wish now to illustrate the methodology to 

remove first and second order autocorrelation from a given return series.  To 

completely eliminate second order autocorrelation, we may make a simple 

modification to the adjustment process in equation (4): 

 2,tr   =  1, 2 1, 2

21
t tr c r

c
−−

−
,                 (12) 

where 2c  is a parameter that we will set to remove the second order autocorrelation in 

the (once) adjusted return series given by 1,tr .  Note that the subscript, 1, indicates 

                                                                                                                                            

The impact of adjustments primarily affected the value (but not significance) of the regression 
coefficients. 
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returns that have been adjusted 1 time.  The subscript, 2, for 2,tr  indicates two 

adjustments with the first adjustment given in equation (4) and the second given in 

equation (12). 

 

Using the definition of true returns, 2,tr , now given in equation (12) we may solve 

directly for the new second order autocorrelation: 

 2,2a   ≡  Corr [ 1,tr  , 1, 2tr − ]  =  
2

1,2 2 1,4 2 1,2

2
2 2 1,2

(1 )

1 2

a c a c a

c c a

 − + +
 

 + −
 

,            (13) 

where ,m na  is the nth autocorrelation made after m adjustments to returns. 

 

We may reset the autocorrelation given by equation (13) to any desired level, 2d .  

The general solution for 2c  may be found by directly solving the second order 

polynomial.  The general solution for 2c  is: 

 2c   =  
( ) ( ) ( )

( )

2 2
1,4 2 1,2 1,4 2 1,2 1,2 2

1,2 2

1 2 1 2 4

2

a d a a d a a d

a d

+ − ± + − − −

−
.       (14) 

The solution given in equation (14) for 2c  will apply for any time series process that 

fulfills the following condition: 

 ( )2
1,2 2a d−  ≤  

( )2
1,4 2 1,21 2

4

a d a+ −
.               (15) 

As with the first order case, we were successful in finding a direct value for 2c  in all 

100 hedge fund indices we examined. 

 

Note that if we make the adjustment as given by equation (12), the first order 

autocorrelation of  2,tr  will no longer be zero.  We will get back to this issue shortly.  

Let us first find the effect of making this second adjustment on variance, correlations 

with additional variables, x, as well as autocorrelations that are not second order. 

 

We may derive the variance of the new process, 2,tr : 
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 Var [ 2,tr ]  = 
( )

( )

22 1,
2

1

1 2

1

i i i i

i i

c c a

c

−

=

+ −

−
∏ Var [ 0,tr ].              (16) 

Note that the variance of the adjusted (unsmoothed) returns will be greater than the 

variance of the original series if the parameters, 1c  and 2c  are positive.  Since many 

of the hedge fund indices we consider have positive first and second order 

autocorrelations, we find further increases in variance beyond that achieved by 

making the adjustment of equation (4). 

 

We may also determine the new correlation between any variable, x, and the new, 

adjusted return series, 2,tr : 

2, ,ρ
tr x   ≡  Corr [ 2,tr , x ]  =  ( )

12
2 21,

1

1 2i i i i
i

c c a
−

−
=

 
 + −
 
 
∏  

* (
0, ,ρ

tr x − 1c
0, 1 ,ρ

tr x−
− 2c

0, 2 ,ρ
tr x−

+ 1c 2c
0, 3 ,ρ

tr x−
 )            (17) 

As was the case with the adjustment for first order autocorrelation, we find that highly 

correlated factors remain highly correlated after the second adjustment.  The dominant 

component in equation (17) remains the correlation between 0,tr  and x,  
0, ,ρ

tr x . 

 

For simplicity we will now assume the objective is to completely remove second 

order autocorrelation.  That is, we will set 2d  to be equal to zero.  It is quite 

straightforward to modify the results that follow for a non-zero 2d . 

 

All autocorrelations for 2,tr  are given by: 

2,na   =  
2

1, 2 2 1, 2 1, 2

2
2 2 1,2

(1 ) ( )

1 2

n n na c c a a

c c a

− + + − +
 

 + −
 

.              (18) 

Note that  

2,1a   =  2 1,3
2
2 2 1,21 2

c a

c c a

−
 + −
 

  ≠  0,                (19) 

since 1,1a   =  0 and 1, 1a −   =  1,1a .  That is, once we adjust returns to remove second 

order autocorrelation, the first order autocorrelation of the new series will no longer 
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be exactly zero.  We did find in all cases we considered, however, that 2,1a  is very 

small in magnitude. 

 

The process we use to remove both first and second order autocorrelation is 

straightforward.  Working with the new adjusted return series, 2,tr , we remove first-

order autocorrelation as described in Section III.A.1.  That is, we will create a new 

adjusted return series: 

 3,tr   =  2, 3 2, 1

31
t tr c r

c
−−

−
.                 (20) 

The solution for 3c  to remove the first order autocorrelation is given by: 

 3c   =   
( ) ( )2 2

2,2 2,2 2,1

2,1

1 1 4

2

a a a

a

+ ± + −
  =  

2
2,1

2,1

1 1 4

2

a
a

± −
 .            (21) 

Given that 2,1a  is likely to be very small, we will likely need to make only a minimal 

adjustment to remove the first order autocorrelation from 2,tr  when we create 3,tr .  

In fact, a direct application of L’Hopital’s rule shows that 3c  will approach zero as 

2,1a  approaches a zero limit.   With the adjustment we make in equation (20), 

however, second order autocorrelation will not remain zero.  We can determine the 

second order autocorrelation for the adjusted series, 3,tr  by using the result from 

equation (10): 

 3,2a   =  
2

2,2 3 3 2,1 2,3

2
3 3 2,1

(1 ) ( )

1 2

a c c a a

c c a

 + − +
 

 + −
 

  =  3 2,1 2,3
2
3 3 2,1

( )

1 2

c a a

c c a

− +
 + −
 

.            (22) 

Given that 3c  is likely to be very small, 3,2a  will be very nearly zero. 

 

To remove both the first and second autocorrelations, we repeat this process until both 

the first and second order autocorrelations fall below a given threshold level.  That is, 

we will once again form a new series of the same form as given in equation (12) to 

create 4,tr  and so on.  Once we have completed this iteration process, the final 

variance given by equation (16) will only approximately hold. The correlations with 

other variables given by equation (17) will also hold only approximately.  In general, 
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the adjustments the iteration process has very little impact once we have initially 

adjusted for the first and second autocorrelations. 

 

Finally, we should comment on the implicit assumption we are making regarding the 

behavior of the fund manager if we make the adjustment as given in equation (12).  

Implicitly, we are assuming the relation between reported return, 0,tr , and the true 

return, 2,tr  , is: 

 0,tr   ≈  ( 1 −  1c )( 1  −  2c ) 2,tr   + 1c  0, 1tr −   +  2c 0, 2tr −  − 1c 2c 0, 3tr − ,  (23) 

where equation (23) holds exactly if it were not necessary to proceed with the 

iteration process. 

 

III.A.3.  To Remove Up to m Orders of Autocorrelation 

 

To remove the first m orders of autocorrelation from a given return series we would 

proceed in a manner very similar to that detailed in Section III.A.2.  We would 

initially remove the first order autocorrelation, then proceed to eliminate the second 

order autocorrelation through the iteration process.  In general, to remove any order, 

m, autocorrelations from a given return series we would make the following 

transformation to returns: 

 ,m tr   =  1, 1,

1
m t m m t m

m

r c r
c

− − −−
−

,                 (24) 

where 1,m tr −  is the return series with the first ( m − 1 ) autocorrelations removed.  The 

general form for all autocorrelations given by this process is: 

 ,m na   =  
2

1, 1, 1,

2
1,

(1 ) ( )

1 2

m n m m m n m m n m

m m m n

a c c a a

c c a

− − − − +

−

 + − +
 

 + −
 

.             (25) 

If  m  =  n  then equation (25) may be reduced to: 

 ,m ma   =  
2

1, 1,2

2
1,

(1 ) (1 )

1 2

m m m m m m

m m m m

a c c a

c c a

− −

−

 + − +
 

 + −
 

.                  (26) 

If our objective is to set ,m ma   =  0, we find the value of mc  to be: 
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 mc   =  
( ) ( )2 2

1,2 1,2 1,

1,

1 1 4

2
m m m m m m

m m

a a a

a
− − −

−

+ ± + −
,              (27) 

which requires that  

 2
1,m ma −  ≤  

( )2
1,21

4
m ma −+

                   (28) 

for a real solution to obtain. 

 

Once we have found this solution for mc  to create ,m tr , we will need to iterate back to 

remove the first ( m  −  1 ) autocorrelations again.  We will then need to once again 

remove the mth autocorrelation using the adjustment in equation (24).  We will 

continue this process until the first m autocorrelations are sufficiently close to zero. 

 

Note that the approximate variance for ,m tr  is:12 

 Var [ ,m tr ]  ≈  
( )

( )

2
1,

2
1

1 2

1

m i i i i

i i

c c a

c

−

=

+ −

−
∏ Var [ 0,tr ].                   (29) 

The approximate correlation between ,m tr  and any variable, x, is given by: 

 
, ,ρ

m tr x   ≡  Corr [ ,m tr , x ]  ≈  ( )
1

2 21,
1

1 2
m

i i i i
i

c c a
−

−
=

 
 + −
 
 
∏  * Φ,            (30) 

where  

 

 Φ  =  
0, ,ρ

tr x  +  [2 ]( 1) m−−   
0 ,

1

ρ
t i

m

i r x
i

c
−

=
∑  

+ [2 1]( 1) m− −−  
0, ( )

1

,
1 1

ρ
t i j

m m

i j r x
i j i

c c
− +

−

= = +

 
 
 
 

∑ ∑  

+ [2 2]( 1) m− −−
0, ( )

2 1

,
1 1 2

ρ
t i j k

m m m

i j k r x
i j i k i

c c c
− + +

− −

= = + = +

  
  

    
∑ ∑ ∑  

                                                 

12 Note that all of the approximations that follow would hold exactly if the iteration process were not 
necessary. 
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Finally, when we remove the first m autocorrelations we implicitly assume: 

0,tr   ≈  
1

(1 )
m

i
i

c
=

 
− 

  
∏ ,m tr   + 2( 1) m−   0,

1

m

i t i
i

c r −
=
∑   

+ 2 1( 1) m−−  
1

0, ( )
1 1

m m

i j t i j
i j i

c c r
−

− +
= = +

 
 
 
 

∑ ∑  

+ 2 2( 1) m−−
2 1

0, ( )
1 1 2

m m m

i j k t i j k
i j i k i
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− −

− + +
= = + = +
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                (31) 

where ,m tr  is the true unsmoothed return. 

 

III.B.  Determination of Hedge Fund Factors 

 

We now wish to map (regress) the individual hedge fund index returns (adjusted to 

remove serial correlation) onto the potential risk factors detailed in Section II.  For 

this part, we will closely follow the methodology of Agarwal and Naik (2001).  

Initially, for each Index Factor we will create two directional factor exposures.  For 

example, in addition to using the S&P 500 index returns as one potential risk factor, 

we will subdivide the S&P 500 returns into a positive and a negative component and 

use those as two additional risk factors.  That is, we will create the following two 

return series: 

 S&P 500 +   =  S&P 500 return if S&P 500 return > 0 

    =  0 otherwise 

 S&P 500 −  =  S&P 500 return if S&P 500 return < 0 
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    = 0 otherwise 

 

The motivation for doing this is that because hedge funds are quite free to change 

their exposures, they may face differing sensitivities to the risk factors in “up” or 

“down” markets.  We posit that for some types of hedge funds modeling the risk 

exposures in this manner will provide greater explanatory power for realised returns.  

We will define the directional factor return series as Directional factors. 

 

In addition to the Index factors, Ken French factors, and Directional factors, we use 

various interest rates, the difference in returns of various fixed income indices with 

respect to each other and to the U.S. T-bill rate, and the changes in these differences.  

For interest rates we use the U.S. Corporate Baa rate, the FHA Mortgage rate, and the 

U.S. 10 year swap rate.  In addition, for the differences we use: the UBS Global return 

less the U.S. Treasury return, the Lehman high-yield return less U.S. Treasury, JPM 

Brady return less Treasury return, JPM Fixed return less JPM Float return, Baa rate 

less Treasury, FHA Mortgage rate less Treasury, the 10 year swap rate less Treasury, 

and the JPM non-U.S. government bond index return less Treasury.  In addition, we 

also created factors based on the changes that occur in these differentials.  We should 

note that the interpretation of the factor correlations depends critically as to whether 

we use a difference in an index return or a difference in yield.  The sign of a 

correlation or a regression coefficient will have opposite interpretations in these two 

cases. 

 

Finally, we will create a set of risk factors that attempt to model the nonlinear 

exposures that many hedge funds may face.  That is, many hedge funds may produce 

after-fee option-like payoffs through the direct use of derivative products, through 

dynamic trading strategies, and / or through the nonlinear fee structure that is standard 

within the industry.  We will define this third category of risk exposures as the 

Trading Strategy factors. 

 

To model the Trading Strategy factors, we will create pseudo option-like payoff 

profiles for a subset of the Index factors.  That is, for some (but not all) of the Index 

factors, we will create a return series for a hypothetical at-the-money call and put 

option, a call and put option with exercise price set one-half standard deviations out-
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of-the-money from the current price of the underlying asset (defined as “shallow” out-

of-the-money), and a call and a put option with exercise price set one full standard 

deviation out-of-the-money from the current price of the underlying asset (defined as 

“deep” out-of-the-money).  For each of the Index factors used for this part, we will 

create the payoffs for 3 call options and 3 put options.13  We assume that each option 

has one month to maturity, is held for one month and if it expires out of the money, 

the return is  − 100 percent.  We use the trailing 24 month standard deviation as the 

estimate for volatility.  The payoff to the short position is assumed to be the inverse of 

the long. 

 

Because many of the Index factors are highly correlated, we choose only to use a 

subset of the original Index factors to construct the Trading Strategy factors.  

Specifically, we create pseudo option returns for the S&P 500, NASDAQ, EAFE, 

Nikkei, Salomon Brothers WGBI, U.S. Credit Bond index, UBS Warburg sub BBB 

and NR index, CME Commodity, Philadelphia Gold/Silver, U.S. Real Estate Inv Trst, 

NYBOT U.S. dollar, and the VIX index.  We feel confident that this subset 

adequately spans the payoffs to options on the remaining Index factors. 

 

We will use the Index factors, Ken French factors, Interest Rate factors, Directional 

factors, and Trading Strategy factors as potential candidates to explain the risk 

exposures of the fixed income hedge fund indices.  Clearly, these risk factors are 

highly correlated with each other and since we have chosen this many we may find a 

spurious relation between one or more of the risk factors and the hedge fund returns.  

Because of the high contemporaneous correlation among the candidate risk factors, 

simultaneous inclusion of even a fairly small subset may lead to extreme 

circumstances of multicollinearity.  Moreover, having a large number of potential risk 

factors from which to choose may allow us to construct a mapping with an 

unrealistically high r-square - due not to any true underlying relation but instead to 

sheer statistical chance. 

                                                 

13 To maintain simplicity, we use simple Black-Scholes prices to determine the payoffs to the options.  
Since our goal is not to correctly price the option, but simply to correctly model behaviour we do not 
expect that the option-pricing model used will materially affect the results.  Agarwal and Naik (2001) 
and Mitchell and Pulvino (2001) find that the exact form of the option-pricing model does not 
materially affect the results. 
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In order to overcome this potential dilemma, we will follow the procedure outlined in 

Agarwal and Naik (2001).  We will use stepwise regressions to determine the 

underlying risk factors to the hedge fund returns.14  For each of the hedge fund 

indices, we will attempt two types of mappings.  First, as a conservative benchmark 

we use only the Index factors, Ken French factors, and Interest Rate factors as 

potential underlying risk factors.  In the second stage we will also include Directional 

factors and Trading Strategy factors.  This will allow us to determine the incremental 

benefit to including directional and non-linear payoff structures as potential 

underlying risk exposures. 

 

Before we actually conduct the regressions to do the mappings we make one final 

adjustment to the factors.  Because the factors exhibit strong characteristics of time-

varying volatility (see Table 3 and Table 4), we scale (divide) each return by its 

trailing 24 month standard deviation before we include the factor in the regression.15  

This should eliminate most concerns about heteroscedasticity in the resulting error 

terms to provide a more accurate fitting.16  

 

III.C.  Value-at-Risk Analysis 

 

After we have completed the mappings, we are ready to proceed with the value-at-risk 

analysis for the individual hedge fund indices.  We will estimate the value-at-risk 

using five different methodologies in order to determine a range of possible risk 

profiles.  First, and most basically, we will use the actual historical adjusted, excess 

returns of each hedge fund to simulate possible distributions for six-month and one-

                                                 

14 In a stepwise regression each potential independent factor is entered one at a time into a regression 
on hedge fund returns.  The factor that produces the highest R2 is then chosen.  An F-test is conducted 
to determine if the selected factor is truly related to the hedge fund return.  If the null of no incremental 
explanatory power is rejected, we proceed to then, one at a time, place each remaining factor in the 
regression with the already chosen factor.  The risk factor that provides the greatest increase in R2 is 
then selected and the process continues until the F-test on the final factor fails to reject the null of no 
incremental explanatory power.   
15 If we do not have data prior to the sample period, we use a fixed two year window for standard 
deviation during the first two years. 
16 Due to this scaling, the resulting regression coefficients will give the effect on hedge fund returns for 
each unit of standard deviation that the factor value exceeds a zero return.  For example, a regression 
coefficient of 0.02 would imply that for each unit of standard deviation that the factor value exceeds 
zero, the hedge fund returns will experience a positive return of 2 percent. 
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year excess returns.  That is, we will randomly select the adjusted historical monthly 

returns (with replacement) to produce a total six-month and one-year excess return.  

We will do this 50,000 times for the individual hedge fund indices in order to 

construct a distribution of possible returns. 

 

One potential weakness to this approach is that this estimate of risk is only 

representative of future risk to the extent that the historical distribution of hedge fund 

returns is stable into the future.  Given that the risk distributions of the actual 

underlying assets are not static, the assumption for the stability at the hedge fund level 

might be described as tenuous at best.  Moreover, this situation is compounded by the 

fact that the trading style of the hedge fund manager is likewise fluid.  It may be the 

case that the dynamic trading style of the hedge fund manager is intended to counter 

any shift in return patterns on the underlying assets, however, we feel that such 

contentions would be fairly classified as “wishful thinking”. 

 

We have two motivations for mapping hedge fund returns onto physical, underlying 

assets.  The first is that the mappings allow us to gain greater insight into the true risk 

profile underpinning hedge fund returns.  While this level of analysis is indeed useful, 

our primary aim is to estimate the future risk distribution of the hedge fund.  Given 

the weaknesses with simulating the hedge fund’s actual historical returns, one 

possible approach is to randomly simulate the mapped factors with their given 

sensitivities to hedge fund returns. 

 

For example, assume that we find the relation between the returns to the HFR Merger 

Arbitrage index and its factors is as follows: 

 

     HFR Merger ArbitrageReturn   =  0.005  +  0.25 * [S&P 500] +  (−0.50) * [EAFE]   (32) 

with a standard error of 0.02. 

 

Instead of randomly simulating the actual historical (adjusted, excess) returns of the 

HFR Merger Arbitrage index, we could randomly select the historical returns of the 

S&P 500 index and the EAFE index and multiply these returns by the factor 
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sensitivities given in equation (32).17  Since our regression equation does not perfectly 

fit the HFR Merger Arbitrage returns, we will need to add a residual component with 

a standard deviation of 0.02.  If we assume that the errors have a normal distribution 

then we would simply use a random number generator to produce a standard normal 

random variate and then multiply that number by 0.02.  So, to be perfectly clear if we 

randomly select an S&P 500 return of 4 percent, an EAFE return of 6 percent, and our 

random number generator gives us a value of 1.01 then the simulated return for month 

t from equation (3) would be: 

HFR Merger ArbitrageSimulated Return   

 =  0.005  +  0.25 * [0.04]  +  (−0.50) * [0.06]  +  0.02 * 1.01 

=  0.0052 

=  0.52 percent 

 

The value-at-risk literature quite commonly assumes assets and portfolios to possess 

fat tails – that returns at the extreme are more common than that estimated by a 

normal distribution.  This is particularly the case for hedge funds that trade in markets 

with questionable liquidity.  Unfortunately, the fund managers of Long-Term Capital 

Management found to their chagrin that markets that might appear as highly liquid in 

most circumstances may dry up at the most inopportune of times.  If we assume the 

error distribution has this characteristic of fat-tails, we might more reasonably 

estimate the true value-at-risk during times of market turmoil.18  In order to estimate 

risk with fat-tails we will also conduct historical simulations using mapped factor 

returns and assuming the error distribution has a Student-t distribution with 4 degrees 

of freedom.19  The Student-t distribution is symmetric like the normal but provides a 

greater probability for extreme events.  In order to conduct this fat-tailed simulation, 

                                                 

17 In order to maintain the correlation structure across factors, we actually will randomly select a row 
from the factor dataset and then use the S&P 500 return and the EAFE return on the same row. 
18 One valid counterpoint is that if we include historical returns during times of market turmoil, we 
have no further need to make adjustments for liquidity and other forms of fat-tail risk.  Unfortunately, 
many fund managers have failed to fully appreciate that future market conditions might exhibit more 
extreme deterioration than that captured in historical datasets.  We do not feel that the Asian crisis, the 
tech stock meltdown, or the putrid performance of Japanese equities over the previous decade will 
adequately encompass the worst possible scenarios for what could transpire during the next 100 years.  
Making use of fat-tailed distributions allows us to model the unthinkable.  
19 The smaller the degrees of freedom, the fatter the tails produced by the Student-t distribution.  Jorion 
(2000) recommends using a Student-t with 4 degrees of freedom.  As the degrees of freedom 
approaches 30, the Student-t distribution will converge to a normal distribution. 
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we need only use a random variate from the Student-t distribution instead of a normal 

distribution.  The calculation for the simulated mapped return is otherwise identical. 

 

In the end, we will conduct five estimations of value-at-risk for each of the hedge 

fund indices.  For each mapping (Index factors and Ken French factors, and Index, 

Ken French, Directional, and Trading Strategy factors) we will conduct two types of 

simulations – one using a normally distributed error term and one using an error term 

with Student-t distribution.  For each estimation, we will randomly generate six-

month and one-year returns 50,000 times.  In addition to the mapped simulations, as 

previously stated we will estimate the value-at-risk using actual historical (adjusted, 

excess) returns. 

 

IV.  The Risk Factors to Hedge Fund Returns 
 

IV.A.  Simple Correlations of Risk Factors to Hedge Fund Returns 

 

We are now ready to proceed with an analysis of the underlying risk factors for each 

of the hedge fund indices.  Table 5 presents the top five and bottom five correlated 

factors to each of the hedge fund indices.  In general, we find remarkable consistency 

in the factors within each hedge fund style and even across hedge fund styles when we 

examine the simple correlations.  This will become even more apparent when we 

proceed with the more formal mapping process.   

 

IV.A.1.  Convertible Arbitrage 

Table 5 clearly shows that all hedge fund indices in the Convertible Arbitrage style 

are highly correlated with the returns on high-yield debt.  Only one of the Convertible 

Arbitrage indices had the convertible factor make the top five – the Hennessee index 

(UBS Convertible return less U.S. Treasury).  We should note also that limited 

evidence exists for a small stock exposure with Convertible Arbitrage.  As for 

negative correlations, we find all the indices are negatively correlated to changes in 

volatility and to mortgage yields. 
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IV.A.2.  Fixed Income Arbitrage 

 

While Table 2 doe show the correlations between the Fixed Income Arbitrage and the 

Convertible Arbitrage styles to be relatively low, we once again find evidence of a 

strong exposure to high-yield debt.  In addition, we find for the FRM and the CSFB 

Fixed Income Arbitrage indices a negative exposure to the yen.  In fact, it is quite 

clear from the CSFB correlations that the hedge funds in this index on balance were 

long U.S. dollar denominated assets and short yen-based assets during this time 

period.  Given the differentials in yields between these two currencies, perhaps this 

result is not surprising. Our results are consistent with Fung and Hsieh (2002) who 

find a very high correlation with high-yield returns for this hedge fund style. 

 

IV.A.3.  Credit Trading 

 

As we would expect, Table 5 shows the two indices within this style to be extremely 

highly correlated with high-yield debt.  The FRM index appears to also have a strong 

correlation with international bonds.  As with most of the hedge fund indices, we find 

a negative correlation with volatility.  Fung and Hsieh (2002) reported the correlation 

between the same HFR index we use and the CSFB High-Yield bond index to be 

0.853.  We find very similar results by using the SSB High-Yield index (correlation 

equal to 0.847). 

 

IV.A.4.  Distressed Securities 

 

We find extreme consistency in the factor correlations with this style for the FRM, 

HFR, and Zurich indices.  Distressed Securities hedge funds tend to have a very 

strong exposure to small stock returns, a very negative exposure to volatility, and tend 

to behave more like growth stocks (low book-to-market).  In addition, this style is 

positively correlated with JPM floating rate returns relative to JPM fixed rate returns.  

We also see that each of the indices are strongly correlated with the Lipper Mutual 

Funds which is used as a benchmark by some hedge funds. 
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IV.A.5.  Merger Arbitrage 

 

As with Distressed Securities, we find a small stock factor with Merger Arbitrage.  

Given that some have argued that the return premium to small stocks is at least in part 

to due to an implicit short put position on the overall market, this result is not 

surprising and is consistent with the findings of Mitchell and Pulvino (2001).  

Moreover, Mitchell and Pulvino (2001) also find a positive, significant loading on the 

SMB factor.  Our finding for a positive correlation with small stocks is consistent with 

this work.  We will examine this issue more closely when we run the step-wise 

regressions to determine the underlying factors to this hedge fund style. 

 

IV.A.6.  MultiProcess – Event Driven 

 

Given the very broad definition for this style of hedge fund, it is quite interesting to 

find out actually what they do in aggregate.  Table 5 begins to shed some light on this 

issue.  We can clearly see from this table that as with Distressed Securities and 

Merger Arbitrage, this style has a very strong exposure to the returns on small stocks.  

In addition, we find limited evidence for a high-yield debt factor for the FRM and 

HFR indices and a non-U.S. bond factor for the CSFB index.  As with most of the 

other styles, MultiProcess – Event Driven is strongly negatively correlated with 

volatility and HML returns.  We also find a long exposure to international floating-

yield debt relative to fixed-rate debt for all indices within this style.        

    

IV.B.  Mapping of Indices Using Only Index, Ken French, and Interest Rate 

Factors 

 

In this section, we use the step-wise regression procedure as in Agarwal and Naik 

(2001) to determine the underlying risk factors for each of the hedge fund styles.  All 

of the results for this section are obtained from Table 6.  We can compare the results 

of this section directly with the results in Section III.B. which are detailed in Table 5.  

In general, we find consistency between this mapping and the simple, univariate 

correlations examined earlier.  In this section, we will also report a measure of the 
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goodness of fit during two subperiods in-sample, 1994 – 1997 and 1998 – 2001.  The 

measure we will use is straightforward: 

 sub-period r-square  =  1  −  residual sum of squares in sub-period
total sum of squares in sub-period

.           (33) 

 

Note that, unlike with the total r-square, the sub-period r-square may take on values 

less than zero for various sub-periods if the regression is conducted over the entire 

time period.20 

 

IV.B.1.  Convertible Arbitrage 

 

We find the dominant factor for Convertible Arbitrage to be the return on a high yield 

index.  In fact, for the HFR index, the top two factors are high yield indices.  For the 

individual hedge fund indices, we find varying levels of fit within sample and over the 

entire sample.  Our procedures were the most successful with the HFR index, 

producing an adjusted r-square of  0.46 over the entire sample and with remarkable 

stability in the sub-period r-squares.  On the other hand, we were unsuccessful in 

achieving a good fit with the FRM index. 

 

IV.B.2.  Fixed Income Arbitrage 

 

It is somewhat difficult to interpret the results of Table 6 for the Fixed Income 

Arbitrage style.  We find evidence of a strong exposure to high yield returns once 

again, but the additional factors vary markedly across the individual indices within 

this style.  Moreover, the in-sample stability of the mappings is also relatively poor.  

Fung and Hsieh (2002) reported results for each of the first two principal components 

to this style for the HFR index and found the first principal component to be well 

explained by the difference between high yield and treasury returns.  They found the 

second principal component to be somewhat explained by the difference between 

                                                 

20 If this is not clear, imagine running a regression using 1,000 data points and then calculating a sub-
period r-square using only 5 of those data points.  Clearly, the residual variance during those 5 days 
could be greater than the total variance over those 5 days.  (This could occur if the 5 data points were 
all outliers, but with low in sub-sample total variance.) 
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convertible bond less treasury returns.  We did not find any evidence for a convertible 

bond exposure, nor for that matter with either the FRM or CSFB indices. 

 

IV.B.3.  Credit Trading 

 

Consistent with Fung and Hsieh (2002), we were able to achieve a remarkably good 

fit with the HFR index, however, our procedure did not identify the High-Yield less 

Treasury factor as dominant.  Instead, our results isolated on the SSB High-Yield 

index.  We did find that the change in the Lehman U.S. High-Yield index less 

Treasury returns should be included as an additional risk factor. 

 

Fung and Hsieh (2002) report they were able to achieve an r-square of 0.78 with the 

CSFB High-Yield bond less Treasury return factor.  They report that their lookback 

option payoff produces an r-square of 0.79.  It is not clear from their paper, that 

lookback options add much to any value in terms of fitting the fixed income hedge 

fund indices they consider. 

 

Finally, we should note that the fit achieved with the FRM index was much less 

strong than that with HFR.  The FRM index mapping was much less stable in-sample 

than that with HFR.  We did find, though, the high-yield factor to once again 

dominate. 

 

IV.B.4.  Distressed Securities 

 

As we found with the univariate correlations, the dominant factor for this style of 

hedge fund is simply small stocks.  The incremental r-square explained by small 

stocks for each of the three indices is over 50 percent.  With the exception of the HFR 

index, the second most important factor is once again the returns on a high-yield 

index.  This did not show up with the univariate correlations of Table 5.  In addition, 

we find remarkable stability in-sample for the chosen factors.  The sub-period r-

squares are quite high for all three indices in this category. 
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IV.B.5.  Merger Arbitrage 

 

As we would expect from the univariate correlations, small stocks are the dominant 

factor for this hedge fund style category.  The explanatory power of small stocks, 

however, is not as great as with Distressed Securities.  This is consistent with the 

results from the univariate correlations.  Our small stock finding is also consistent 

with Mitchell and Pulvino (2001).  One danger of using the Agarwal and Naik (2001) 

technique, is that factors may find their way through the step-wise process that have 

no intuitive relation to the dependent variable (hedge fund returns in this case).  We 

may find such an instance here where the returns on health stocks are included for 

three out of four hedge fund indices.  However, we feel confident that we can filter 

out logically irrelevant variables ex-post as well as we could ex-ante. 

 

IV.B.6.  MultiProcess – Event Driven 

 

As with Distressed Securities and Merger Arbitrage, we find small stocks entering 

significantly in some manner for all five indices.  We also find the high-yield index is 

relevant for FRM, CSFB, and Zurich.  In general, we were able to attain reasonably 

good fits in all cases with reasonable in-sample stability. 

 

IV.C.  Mapping of Indices Using All Factors 

 

All the results that follow are detailed in Table 7.  In general, we found the most 

important risk factor for nearly all styles to be a short put position on high-yield debt.  

Consistent with Fung and Hsieh (2002), we found no real improvement with using 

non-linear payoff factors for Fixed Income Arbitrage and Credit Trading.  However, 

we did find that using the non-linear factors resulted in moderate increases in 

explanatory power for the other hedge fund styles.  One of our most significant 

findings is that the short put position on equities advocated by Mitchell and Pulvino 

(2001) as a risk factor for Merger Arbitrage should, in fact, be a short put on high-

yield debt. 
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IV.C.1.  Convertible Arbitrage 

For three of the four indices, we found the most important risk factor to be the short 

put position on the UBS Warburg sub BBB / NR index.  For the remaining index in 

this category, the most important factor was the UBS Warburg sub BBB / NR index 

itself.  This remarkable consistency leads to believe that this is a true risk factor for 

this hedge fund strategy.  Moreover, for the HFR and CSFB indices we see a high-

yield index also enter into the step-wise regressions.  In general, a comparison of 

Table 7 with Table 6 reveals a moderate improvement in explanatory power by 

including the non-linear payoff factors. 

 

IV.C.2.  Fixed Income Arbitrage 

 

The results for this hedge fund strategy given on Table 7 are quite difficult to 

interpret.  We do find evidence for a high-yield risk factor and, in fact, we find the 

short put on high-yield debt for the FRM index.  For all three indices we do find 

evidence for a high-yield risk factor.  Consistent with Fung and Hsieh (2002), we do 

not believe that adding non-linear factors to this hedge fund style provides any 

improvements in explanatory power.  Moreover, the fits that we get are remarkably 

unstable in-sample. 

 

IV.C.3.  Credit Trading 

 

Two factors enter quite strongly for the two indices in this style:  the return on high-

yield debt and, once again, the short put on high-yield debt.  In particular, the fit we 

achieve with the HFR index is quite strong and stable in-sample.  Unfortunately, it is 

not clear that adding this non-linearity provides much benefit to the remarkably good 

fit we were able to achieve in Table 6 for this style without non-linear and directional 

risk factors. 

 

IV.C.4.  Distressed Securities 

 

While we found in Table 6 that the most important factor for this style of hedge fund 

was small stocks, it is interesting to note that, once again, the short put position on 

high-yield debt enters as the most important factor for two of the three indices 
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considered and the second factor for Zurich.  The small stock factor falls to second 

most important for FRM and HFR and remains the most important for Zurich.  In 

addition, we find a strong negative exposure to volatility in the regressions – 

something we saw in the univariate correlations but have not seen in the regressions 

until now.  We were able to achieve marginal improvements in fit by including non-

linearities for this style with considerable stability in-sample. 

 

IV.C.5.  Merger Arbitrage 

 

In Table 6 we found small stocks to be the most important factor for this hedge fund 

style.  Once we include non-linear payoffs, we once again find the short put on high-

yield debt dominates.  This is interesting in that we did not find any evidence from 

Table 5 for the importance of high-yield debt.  Our results here are consistent with 

Mitchell and Pulvino (2001), except that the risk in risk arbitrage (their words) would 

be more accurately akin to a short put on debt rather than equity.  Finally, we find 

varying evidence for factor stability with this style – with the least stable mapping 

occurring with the HFR index. 

 

IV.C.6.  MultiProcess – Event Driven 

 

For this hedge fund style we once again find the same dominant risk factor – a short 

put on high-yield debt.  This enters first four of five hedge fund indices and second for 

HFR.  In addition, we find that many of the indices have a strong negative exposure to 

changes in volatility.  We find moderate improvement with including non-linear 

payoffs here with stability of the factors in-sample. 

 

IV.C.7.  A Discussion of the Short Put on High-Yield Debt 

 

We have found that the short put on high-yield debt appears to replace small stocks as 

the most important factor when both are rival factors in a regression.  To investigate 

the similarity between these two factors we calculated simple correlations between 

small stocks and the three candidate short put positions on the UBS Warburg sub 

BBB / NR index (at, shallow, and deep).  We found the correlations to be:  small and 

short put (at)  0.389, small and short put (shallow)  0.517, small and short put (deep)  



                                                                                                                                           31 

 
  

0.635.  In addition, we examined the correlations between puts constructed on the 

S&P 500 index and the NASDAQ index with the puts on the UBS Warburg index.  In 

general, we found the greatest correlations to be between the NASDAQ and UBS 

Warburg with values of about 0.800.  While these correlations are certainly high, we 

do feel that the UBS Warburg put returns are sufficiently distinct to warrant their 

designation as the actual risk factor. 

  

V.  Value-at-Risk Analysis 
 

We wish to now examine the effect of using non-linearities as factor exposures on 

value-at-risk estimates for the different hedge fund styles.  While the effect of 

unsmoothing returns documented in Section III may have some impact on our ability 

to detect significant underlying risk factors, the primary benefit to unsmoothing is in 

estimating risk.  The magnitude, if not the significance, of the factor exposures will 

likely increase as we unsmooth reported returns.  In addition, we wish to examine the 

congruity for value-at-risk estimates within each hedge fund style.  That is, we have 

already found remarkable consistency in the underlying risk factors to each of the 

hedge fund styles.  The question that remains is whether in-sample we can find this 

same consistency in value-at-risk estimates. 

 

As previously stated, we will conduct five different value-at-risk estimations with 

each built from 50,000 simulations.  Four of the estimations will be based upon the 

two mappings:  Index, Ken French, and Interest-rate; Index, Ken French,  Interest-

rate, Directional, and Trading Strategy.  For each mapping one estimation will 

assume normally distributed errors and a second estimation will assume errors with a 

Student-t (degrees of freedom = 4) distribution. 

 

Before we present the results for the individual hedge fund styles, we would like to 

present as a benchmark the value-at-risk for various Index and Ken French factors.  

This estimation is based solely upon historical monthly returns from January, 1994 

through December, 2001.  We build our value-at-risk estimates for the Index factors 

by randomly selecting with replacement monthly returns to build up a total six-month 

and one-year return.  This process is repeated 50,000 times for each Index factor.  As 



                                                                                                                                           32 

 
  

this is a time period during which equities have performed markedly well, we cannot 

assume that the future distribution will match this historical one.  However, it will 

give us some insight into the magnitude of the value-at-risk estimates for the hedge 

fund returns. 

 

Table 8 presents the value-at-risk estimations for excess returns (relative to the yield 

on a U.S. T-bill) for 29 of the 40 Index factors.  Table 9 contains the value-at-risk 

estimates for the Ken French factors.  In general, as we would expect we find the 

bonds to have the safest level of value-at-risk, followed by real estate, equities, and 

then commodities.  The safest of all the Index factors is the Lehman Brothers 

Gov/Corp bond index with a one-year, one percent value-at-risk estimate of only − 

5.73 percent.  On the opposite end of the risk spectrum lie the commodity indices with 

one-year, one percent value-at-risk levels approaching − 50 percent and worse.  On a 

purely reward-to-risk basis very little justification can be made for including a 

commodity position in one’s portfolio.21   

 

We are now ready to proceed with the value-at-risk estimates for the individual hedge 

fund styles.  The risk levels of the styles should be compared directly back to Table 8 

and Table 9 which give downside risk estimates to the factors.  Table 10 will give the 

value-at-risk estimates for every hedge fund style. 

 

V.A.  Convertible Arbitrage 

 

The primary result we find here is that in spite of the remarkable homogeneity in 

underlying explanatory risk variables, we find a remarkable range in downside risk 

estimates.  For instance, the CSFB estimates give value-at-risk estimates that are two 

to four times greater than that for FRM.  This is somewhat surprising given that CFSB 

requires a minimum total assets under management of 10 million U.S. dollars and is 

value-weighted.  The HFR and Hennessee index fall between these two extremes.  

While the estimated mean excess returns are relatively close, the estimated standard 

deviations vary substantially as we compare across the indices. 
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In addition, we find that limited evidence for slight increases in downside risk when 

we include the non-linear risk factors, however, the difference is remarkably small.  

To see this compare the Normal row with “All”  and the Normal row with “Index, 

French” for each of the indices. 

 

V.B.  Fixed Income Arbitrage 

 

In general, we find downside risk exposures to be much greater with Fixed Income 

Arbitrage than for Convertible Arbitrage.  We find very marginal evidence that 

including non-linearities slightly increases downside exposure.  While the value-at-

risk estimates do somewhat vary across indices, they fall within a much tighter range 

than that with Convertible Arbitrage. 

 

V.C.  Credit Trading 

 

While the estimated mean excess returns differ substantially for the two hedge fund 

indices in this category, the standard deviations and estimated value-at-risk levels are 

much closer.  We also find strong evidence here that including non-linear factors 

leads to increased estimates for downside loss. 

 

V.D.  Distressed Securities 

 

Recall that all indices in this style loaded very strongly on either small stocks or the 

short put on high-yield debt.  In spite of the relative equality of mean excess return 

across the indices, we find a considerable range of possible value-at-risk estimates.  

Once again, even though we are fairly confident in our ability to determine the 

underlying factors to this style, this does not necessarily translate into any necessary 

consistency regarding the value-at-risk to this style – even in-sample.  We also find 

that including non-linearities increases downside risk estimates. 

 

V.E.  Merger Arbitrage 

 

                                                                                                                                            

21 Of course, the primary selling point for commodities is their diversification value. 
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Across all indices, Merger Arbitrage appears to be the safest and one of the strongest 

performing hedge fund styles.  Downside risk estimates are far safer than that with the 

other indices and the mean excess returns are second only to MultiProcess – Event 

Driven.  This, in fact, should not be surprising given that this strategy was 

documented to be one of the safest in Table 1 and required the least adjustment due to 

its low autocorrelation in original returns.  As with the other indices, we find limited 

evidence that including the non-linear factors leads to more negative estimates for 

value-at-risk.  The risk estimates appear to be relatively stable across the different 

hedge fund indices. 

 

V.F.  MultiProcess – Event Driven 

 

This hedge fund category has outperformed all other categories during the sample 

period.  We find, once again evidence that including non-linear payoffs marginally 

increases downside risk.  As we found with Convertible Arbitrage, even though we 

have considerable stability in the underlying risk factors across indices, we find a 

substantial range for possible value-at-risk estimates. 

 

VI.  Conclusion 

 

In this paper, we have shown a methodology to completely remove any order of 

autocorrelation from reported returns that may arise due to smoothing to find, in 

theory, the true underlying returns.  We apply this method to 21 different hedge fund 

indices in six different styles – Convertible Arbitrage, Fixed Income Arbitrage, Credit 

Trading, Distressed Securities, Merger Arbitrage, and MultiProcess – Event Driven.  

After removing the autocorrelations from returns, we find increases in risk of between 

60 and 100 percent for many of the individual indices.  In particular, the 

autocorrelations were most severe for Convertible Arbitrage and Fixed Income 

Arbitrage. 

 

Once we have unsmoothed returns find the underlying risk factors for the individual 

indices to facilitate comparison within each style.  In fact, we find remarkable 

similarities across as well as within the individual hedge fund styles.  The hedge fund 
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indicies have a very strong exposure to high-yield credit, small stocks with negative 

exposures to volatility. 

When we map the hedge fund returns to non-linear payoff factors, we find that one 

particular risk factor is common to 17 of the 21 indices – a short put position on the 

UBS Warburg BBB / NR index.  To put this more succinctly – a short put on high-

yield debt.  While earlier research has certainly identified non-linear risk factors, none 

have isolated on this particular one across a wide a range of hedge fund indices and 

trading styles. 

 

Finally, we conduct value-at-risk analyses using the individual mappings onto risk 

factors.  For many hedge fund styles we find a wide range of downside risk estimates.  

In addition, we find that the inclusion of non-linear factors marginally increases the 

magnitude of the downside risk estimate, but the effect is relatively slight. 

 

We feel that future work should focus on the autocorrelation adjustment process 

introduced in this paper.  We feel this methodology may have a number of important 

applications beyond the purposes of this paper.  Perhaps it is a method that can be 

used to quickly rescale the reported autocorrelations of earnings if it is suspected that 

one company’s reported results are inordinately smooth.  While we do believe that the 

method will apply across a wide variety of time series processes, this has not been 

properly examined and much work in this area remains. 

 

Hedge funds provide fertile ground for many interesting avenues of research due to 

their sheer diversity and inherent opaqueness.  The mapping methodology used in this 

paper is gaining in acceptance, but we must be careful as we proceed down this path.  

For industry, the ultimate aim of mapping is to estimate and simulate risk 

distributions.  Unfortunately, the trading practices of hedge funds are highly fluid and 

prior sensitivities may poorly reflect future risk.  Even within a given style category 

with common underlying risk factors, the estimated magnitude of the exposures 

across different indices may result in widely varying estimates of risk for a given 

strategy.  Needless to say, we must proceed cautiously when examining the true risk 

underlying hedge fund returns. 
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Appendix A 

Definitions of Hedge Fund Strategies 

Note:  In all cases these definitions are taken directly from the stated source. 

 

1.  Convertible Arbitrage 
Convertible arbitrage involves taking positions in convertibles hedged by the issuers equity in 

situations in which the manager discerns that the market price reflects a lower level of stock volatility 

than the manager anticipates will actually be the case for the underlying stock over some specified time 

horizon.  This means the manager anticipates the convertible bond to be more valuable than its current 

market price.  The equity risk is hedged by shorting the underlying stock to realize a profitable cash 

flow as the stock’s price changes.  The hedging process, in effect, realizes the cheapness of the 

convertible bond.  The credit risk of the convertibles is either explicitly hedged, or actively mitigated 

(either by investing in a very diversified portfolio of convertibles, or by finding convertibles with high 

hedge ratios trading far above their bond floor, thus having little or no credit spread risk). 

    (Manager Guide to Fund Classification, MSCI, July 2002) 
 

2.  Fixed Income Arbitrage 
Fixed income arbitrage managers seek to exploit pricing anomalies within and across global fixed 

income markets and their derivatives, using leverage to enhance returns.  In most cases, fixed income 

arbitrageurs take offsetting long and short positions in similar fixed income securities that are 

mathematically, fundamentally, or historically interrelated.  The relationship can be distorted by market 

events . . . 

     (UBS Warburg, In Search of Alpha, October 2000) 

 

3.  Credit Trading (High yield fixed income) 
Fixed income high-yield managers invest in non-investment grade debt. Objectives may range from 

high current income to acquisition of undervalued instruments. Emphasis is placed on assessing credit 

risk of the issuer. Some of the available high-yield instruments include extendible/reset securities, 

increasing-rate notes, pay-in-kind securities, step-up coupon securities, split-coupon securities and 

usable bonds. 

         (www.hfr.com) 

 

4.  Distressed Securities 
Distressed Securities strategies invest in, and may sell short, the securities of companies where the 

security's price has been, or is expected to be, affected by a distressed situation. This may involve 
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reorganizations, bankruptcies, distressed sales and other corporate restructurings. Depending on the 

manager's style, investments may be made in bank debt, corporate debt, trade claims, common stock, 

preferred stock and warrants. Strategies may be sub-categorized as "high-yield" or "orphan equities." 

Leverage may be used by some managers. Fund managers may run a market hedge using S&P put 

options or put options spreads. 

         (www.hfr.com) 
 

5.  Merger Arbitrage 
Merger arbitrageurs seek to capture the price spread between current market prices of securities and 

their value upon successful completion of a takeover, merger, restructuring or similar corporate action.  

Normally, the principal determinant of success of a merger arbitrage is the consummation of the 

transaction.  Typically, merger arbitrage managers wait until a merger is announced before taking a 

merger arbitrage position; they do not generally speculate on stocks that are expected to become 

takeover targets, or trade in instruments that are mispriced relative to others. 

 

In mergers involving an offer of stock in the acquiring company, the spread is the difference between 

the current values of the target company stock and the acquiring company stock.  Capturing this spread 

typically involves buying the stock of the target company and shorting an appropriate amount of the 

acquiring company’s stock.  In straight stock for stock deals, the relationship between the two 

companies’ stock prices is linear.  In collared stock for stock transactions, the cash value of the amount 

of stock to be exchanged within the transaction has upper and / or lower limits; this means that the 

relationship between the two companies’ stock prices is non-linear, and the manager will often make 

use of options or actively manage the short stock position to retain an appropriate hedge.   

 

In mergers involving cash only transactions, the spread is the difference between the current market 

price and the offered price.  Capturing the spread in these transactions is possible by just purchasing the 

stock of the target company; the manager may or may not take a short position in the stock of the 

acquiring company. 

     (Manager Guide to Fund Classification, MSCI, July 2002) 

 

6.  MultiProcess – Event Driven 
Event-Driven is also known as "corporate life cycle" investing. This involves investing in opportunities 

created by significant transactional events, such as spin-offs, mergers and acquisitions, bankruptcy 

reorganizations, recapitalizations and share buybacks. The portfolio of some Event-Driven managers 

may shift in majority weighting between Risk Arbitrage and Distressed Securities, while others may 

take a broader scope. Instruments include long and short common and preferred stocks, as well as debt 

securities and options. Leverage may be used by some managers. Fund managers may hedge against 

market risk by purchasing S&P put options or put option spreads. 

         (www.hfr.com)  
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TABLE 1 

Hedge Fund Indices 
Excess and Adjusted Monthly Returns 

January, 1994 – December, 2001 
 

  Excess Returns Autocorrelations Adjusted Returns Autocorrelations 
  Mean Std Dev Info 

Ratio First Second Third Fourth Mean Std 
Dev  

Info 
Ratio First Second Third Fourth 

FRM 0.682 1.065 0.640 0.399** 0.249* -0.020 0.034 0.670 1.624 0.413 0.000 0.000 0.000 0.000 
HFR 0.524 1.033 0.507 0.508** 0.198 -0.076 -0.094 0.503 1.594 0.315 0.000 0.000 0.000 0.000 

CSFB 0.494 1.371 0.361 0.604** 0.470** 0.147 0.126 0.485 2.618 0.185 0.000 0.000 0.000 0.000 
Arbitrage 

Convertible 
Henn 0.357 1.235 0.289 0.503** 0.133 -0.026 -0.094 0.349 1.865 0.187 0.000 0.000 0.000 0.000 
FRM 0.470 1.370 0.343 0.527** 0.358** 0.069 0.087 0.439 2.574 0.171 0.000 0.000 0.000 0.000 
HFR 0.045 1.320 0.034 0.373** 0.029 0.120 0.030 0.037 1.931 0.019 0.000 0.000 0.000 0.000 Arbitrage Fixed 

Income 
CSFB 0.166 1.176 0.141 0.403** 0.133  0.049 0.100 0.162 1.882 0.086 0.000 0.000 0.000 0.000 
FRM 0.415 1.572 0.264 0.319** 0.150 -0.033 0.088 0.409 2.295 0.178 0.000 0.000 0.000 0.000 Credit Trading HFR 0.103 1.447 0.071 0.309** 0.144 -0.030 0.028 0.091 2.001 0.046 0.000 0.000 0.000 0.000 
FRM 0.561 1.515 0.371 0.401** 0.074 -0.085 -0.042 0.540 2.036 0.265 0.000 0.000 0.000 0.000 
HFR 0.476 1.656 0.287 0.410** 0.089 -0.065 -0.001 0.444 2.364 0.188 0.000 0.000 0.000 0.000 Distressed 

Securities 
Zurich 0.437 1.731 0.253 0.320** 0.174 -0.003 0.020 0.432 2.513 0.172 0.000 0.000 0.000 0.000 
FRM 0.676 1.117 0.605 0.170 -0.040 -0.082 -0.125 0.675 1.130 0.597 0.000 0.000 0.000 0.000 
HFR 0.612 1.064 0.575 0.104 0.047 0.078 -0.170 0.616 1.135 0.543 0.000 0.000 0.000 0.000 
Henn 0.556 1.024 0.543 0.153 -0.053 -0.007 -0.178 0.556 0.986 0.564 0.000 0.000 0.000 0.000 Merger Arbitrage 

Zurich 0.555 1.079 0.514 0.235* 0.034 -0.062 -0.102 0.548 1.237 0.443 0.000 0.000 0.000 0.000 
FRM 0.891 1.585 0.562 0.210* 0.115 0.004 -0.061 0.891 1.930 0.462 0.000 0.000 0.000 0.000 
HFR 0.792 1.904 0.416 0.215*  -0.031 -0.040 0.010 0.784 2.120 0.370 0.000 0.000 0.000 0.000 

CSFB 0.563 1.804 0.312 0.326** 0.126 0.009 -0.001 0.550 2.511 0.219 0.000 0.000 0.000 0.000 
Henn 0.645 1.700 0.379 0.396** 0.098 -0.050 -0.108 0.620 2.129 0.291 0.000 0.000 0.000 0.000 

MultiProcess 
(Event Driven) 

Zurich 0.469 1.223 0.384 0.242* 0.098 -0.033 -0.080 0.463 1.488 0.311 0.000 0.000 0.000 0.000 
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TABLE 2 

Hedge Fund Indices 
Correlations 

January, 1994 – December, 2001 
 

  Arbitrage Convertible Arbitrage Fixed Income Credit Trading Distressed Securities 
  FRM HFR CSFB Henn FRM HFR CSFB FRM HFR FRM HFR Zurich 

FRM 1.000 0.785 0.706 0.742 0.451 0.265 0.336 0.489 0.480 0.429 0.434 0.432 
HFR  1.000 0.719 0.812 0.539 0.152 0.300 0.588 0.656 0.643 0.623 0.628 

CSFB   1.000 0.599 0.584 0.262 0.464 0.652 0.630 0.483 0.455 0.447 
Arbitrage 

Convertible 
Henn    1.000 0.388 0.204 0.205 0.431 0.438 0.528 0.502 0.488 
FRM     1.000 0.570 0.642 0.590 0.688 0.529 0.517 0.475 
HFR      1.000 0.532 0.263 0.373 0.233 0.226 0.113 Arbitrage Fixed 

Income 
CSFB       1.000 0.436 0.474 0.312 0.318 0.274 
FRM        1.000 0.717 0.572 0.566 0.575 Credit Trading HFR         1.000 0.770 0.727 0.715 
FRM          1.000 0.947 0.864 
HFR           1.000 0.872 Distressed Securities 

Zurich            1.000 
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TABLE 2 − continued 
Hedge Fund Indices 

Correlations 
January, 1994 – December, 2001 

 
  Merger Arbitrage MultiProcess (Event Driven) 
  FRM HFR Henn Zurich FRM HFR CSFB Henn Zurich 

FRM 0.322 0.329 0.398 0.430 0.436 0.450 0.470 0.418 0.427 
HFR 0.502 0.497 0.575 0.620 0.595 0.610 0.649 0.598 0.628 

CSFB 0.407 0.446 0.489 0.528 0.513 0.506 0.562 0.496 0.553 
Arbitrage 

Convertible 
Henn 0.290 0.271 0.391 0.421 0.531 0.540 0.513 0.483 0.460 
FRM 0.350 0.319 0.383 0.475 0.455 0.516 0.599 0.462 0.483 
HFR 0.093 0.071 0.161 0.158 0.143 0.212 0.220 0.161 0.138 Arbitrage Fixed 

Income CSFB 0.166 0.096 0.208 0.297 0.324 0.348 0.309 0.321 0.272 
FRM 0.421 0.419 0.446 0.557 0.537 0.566 0.631 0.500 0.540 Credit Trading HFR 0.579 0.559 0.608 0.709 0.628 0.721 0.784 0.701 0.720 
FRM 0.667 0.632 0.725 0.795 0.803 0.872 0.847 0.858 0.854 
HFR 0.632 0.582 0.687 0.774 0.770 0.838 0.850 0.827 0.831 Distressed Securities 

Zurich 0.650 0.623 0.694 0.775 0.797 0.822 0.830 0.763 0.847 
FRM 1.000 0.902 0.939 0.900 0.746 0.739 0.704 0.746 0.805 
HFR  1.000 0.887 0.853 0.706 0.682 0.710 0.695 0.802 
Henn   1.000 0.910 0.773 0.768 0.731 0.794 0.855 Merger Arbitrage 

Zurich    1.000 0.831 0.839 0.838 0.841 0.933 
FRM     1.000 0.909 0.811 0.806 0.844 
HFR      1.000 0.859 0.858 0.854 

CSFB       1.000 0.819 0.873 
Henn        1.000 0.853 

MultiProcess 
(Event Driven) 

Zurich         1.000 
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TABLE 3 
Index Factors 

Excess Monthly Returns 
January, 1994 – December, 2001 

    Standard Deviation Autocorrelation 

 Mean 
Return 

Std 
Dev 

Return 

Info 
Ratio 94 − 95 96  − 97 98 − 99 00 −  01 First Second 

SP500 0.795 4.402 0.181 2.614 3.792 4.941 5.144 -0.041 -0.079 
DJIA 0.799 4.568 0.175 3.198 3.986 5.122 5.131 -0.048 -0.064 
NASDAQ 0.936 8.526 0.110 3.329 5.345 8.442 12.558 0.047 -0.035 
Russell 2000 0.423 5.572 0.076 3.049 4.304 6.534 7.269 0.038 -0.118 
Wilshire 5000 0.576 4.524 0.127 2.692 3.618 5.255 5.382 0.011 -0.104 
SP Barra Growth 0.765 5.028 0.152 2.537 4.225 5.122 6.389 -0.027 -0.01 
SP Barra Value 0.499 4.285 0.117 2.879 3.480 5.172 4.909 -0.033 -0.107 
MSCI World 0.370 4.041 0.092 2.859 3.222 4.517 4.553 -0.027 -0.094 
Nikkei -0.742 5.980 -0.124 6.509 5.161 5.551 6.017 -0.009 -0.026 
FTSE 0.118 3.862 0.030 3.499 3.323 4.063 3.975 -0.006 -0.068 
EAFE -0.038 4.195 -0.009 3.582 3.456 4.566 4.294 -0.043 -0.122 
Lipper Mut Funds 0.626 4.362 0.144 2.515 3.673 4.957 5.352 -0.023 -0.117 
MSCI AAA -0.090 2.780 -0.032 2.505 2.113 2.611 3.489 0.177 -0.041 
MSCI 10 Yr + 0.237 2.322 0.102 2.586 2.535 1.860 2.148 0.177 -0.051 
MSCI Wrld Sov Ex-USA -0.084 2.342 -0.036 2.493 1.851 2.335 2.433 0.110 -0.061 
UBS Warburg AAA / AA 0.680 3.616 0.188 1.282 2.982 4.815 4.120 0.021 -0.237* 
UBS Warburg sub BBB / NR 0.765 5.946 0.129 2.834 2.754 6.970 7.975 0.060 0.063 
UBS Warburg Conv. Global 0.279 3.393 0.082 2.706 2.065 3.760 4.060 0.038 -0.035 
CBT Municipal Bond -0.422 2.234 -0.189 3.043 2.072 1.415 1.967 0.088 -0.065 
Lehman U.S. Aggregate -0.423 1.113 -0.380 1.383 1.150 0.865 0.913 0.253* -0.025 
Lehman U.S. Credit Bond -0.430 1.411 -0.305 1.734 1.491 1.150 1.086 0.165 0.009 
Lehman Mortgage Backed Secs -0.416 0.918 -0.453 1.245 0.868 0.576 0.785 0.288** -0.003 
Lehman U.S. High Yield -0.571 2.130 -0.268 1.538 1.144 1.810 3.302 0.021 -0.085 
Lehman Gov / Corp 0.134 0.910 0.147 1.052 0.956 0.761 0.786 0.262* -0.025 
SSB High Yield Index 0.094 1.943 0.048 1.381 0.821 2.003 2.827 0.015 -0.104 
US Credit Bond -0.439 1.410 -0.311 1.733 1.491 1.151 1.085 0.165 0.008 
Salomon WGBI -0.029 1.740 -0.017 1.692 1.317 1.812 1.967 0.195 -0.050 
JPM Non-U.S. Govt Bond -0.057 2.274 -0.025 2.322 1.818 2.282 2.432 0.116 -0.067 
JPM Brady Broad 0.646 5.066 0.127 5.560 4.081 6.735 2.885 -0.010 -0.131 
JPM Brady Broad Fixed 0.650 4.935 0.132 6.099 4.686 5.412 2.713 0.031 -0.086 
JPM Brady Broad Float 0.675 5.409 0.125 5.318 3.813 7.871 3.334 -0.023 -0.148 
CME Goldman Commodity -0.248 5.116 -0.049 2.950 4.332 6.262 6.080 -0.048 -0.143 
Dow Jones Commodity -0.739 5.056 -0.146 2.540 2.980 8.324 4.042 -0.001 -0.191 
Philadelphia Gold / Silver -0.789 10.559 -0.075 8.271 9.588 15.217 7.174 -0.239* -0.135 
Wrld Ex-U.S. Real Estate -0.166 6.111 -0.027 6.214 5.496 7.177 4.896 -0.035 0.046 
U.S. Real Estate 0.338 4.952 0.068 3.973 4.248 6.011 4.604 -0.024 -0.01 
CME Yen Futures -0.487 4.040 -0.121 4.071 3.014 4.864 3.554 -0.020 0.058 
NYBOT Dollar Index -0.186 2.140 -0.087 1.968 2.019 1.868 2.419 -0.006 -0.092 
NYBOT Orange Juice -0.182 8.778 -0.021 7.845 8.363 10.636 7.747 -0.374** 0.244* 
%  Chg  VXN 1.764 15.202 0.116 13.334 9.698 18.992 16.873 -0.075 -0.193 

%  Chg  VIX 1.981 19.190 0.103 20.412 16.585 22.923 15.816 -0.153 -0.211* 
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TABLE 4 

Ken French Factors 
Excess Monthly Returns 

January, 1994 – December, 2001 
 

    Standard Deviation Autocorrelation 

 Mean 
Return 

Std 
Dev 

Return 

Info 
Ratio 94 − 95 96  − 97 98 − 99 00 −  01 First Second 

SMB -0.334 4.036 -0.083 1.818 3.456 3.522 5.987 -0.007  -0.006  

HML -0.413 4.897 -0.084 2.126 2.624 4.492 7.638 0.097  0.023  

Low 0.764 4.893 0.156 2.691 4.103 5.489 5.887 0.000 -0.059  

High 0.728 4.051 0.180 2.729 2.929 4.575 5.278 0.110 -0.269** 

Big 0.765 4.527 0.169 2.585 3.698 5.132 5.457 -0.013  -0.083  

Small 0.732 5.944 0.123 3.012 4.801 6.588 8.073 0.125  -0.198  

Momentum 0.592 5.511 0.107 1.641 2.344 4.667 9.493 -0.108  -0.079  

Europe High BM 0.908 5.354 0.170 3.382 4.147 6.286 6.500 -0.024  -0.052  

Europe Low BM 0.412 4.672 0.088 3.092 3.489 5.106 5.737 -0.024  -0.011  

Europe HML 0.105 3.321 0.032 1.716 2.412 3.748 4.520 0.222* 0.062  

UK High BM 0.504 4.693 0.107 4.203 2.728 4.946 6.004 0.024  -0.172  

UK Low BM 0.422 3.943 0.107 3.993 2.935 3.594 4.314 -0.052  0.017  

UK HML -0.308 3.610 -0.085 1.787 2.024 4.325 5.008 0.083  0.104  

Pacific Rim High BM 0.104 7.520 0.014 4.862 5.659 10.439 6.891 0.050 -0.114  

Pacific Rim Low BM -0.785 5.787 -0.136 4.724 5.398 5.942 5.492 0.070 -0.018  

Pacific Rim HML 0.498 5.210 0.096 1.649 3.180 7.425 5.962 0.025  0.010 

Japan High BM 0.238 8.598 0.028 5.969 6.331 11.728 7.931 0.012  -0.136  

Japan Low BM -0.850 6.428 -0.132 5.671 5.886 6.267 6.087 0.089  -0.010 

Japan HML 0.697 6.209 0.112 1.858 3.957 8.818 7.091 -0.026  -0.029  

NoDurbl 0.672 4.098 0.164 2.455 3.777 5.172 4.188 0.092  -0.115  

Durbl 0.926 5.737 0.161 3.683 4.370 6.049 7.370 -0.061  -0.013  

Manuf 0.522 4.407 0.118 3.070 3.481 5.466 4.871 0.024  -0.095  

Enrgy 0.664 5.085 0.130 3.352 3.680 6.516 5.912 -0.039  -0.069  

HiTec 1.439 9.122 0.158 4.187 6.692 8.769 13.004 -0.027  -0.015  

Telcm 0.392 6.554 0.060 3.015 4.678 7.225 7.890 0.068  -0.017  

Shops 0.759 4.825 0.157 3.076 3.819 5.620 5.874 0.045  -0.269** 

Hlth 1.291 4.785 0.270 3.851 4.681 5.699 4.627 -0.176  -0.027  

Utils 0.430 4.369 0.098 3.280 3.267 4.322 5.929 0.001  -0.160 

Other 0.858 4.868 0.176 3.123 3.810 6.097 5.581 -0.045  -0.094  
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TABLE 5 

Top and Bottom Correlated Factors to Hedge Fund Indices 
January, 1994 – December, 2001 

 
  Arbitrage Convertible Arbitrage Fixed Income Credit Trading 
  FRM HFR CSFB Hennessee FRM HFR CSFB FRM HFR 

Top Five 1 Lehman U.S. 
High Yield 

SSB High 
Yield Index 

SSB High 
Yield Index 

UBS Warburg 
sub BBB / NR 

JPM Brady 
Broad Float 

Chg in 10 Yr. 
US Swap Rate 

Lehman U.S. 
High Yield 

SSB High 
Yield Index 

SSB High 
Yield Index 

  0.475 0.627 0.578 0.619 0.535 0.287 0.381 0.631 0.847 

 2 Leh. High Yld 
Ret − Treas. 

Lehman U.S. 
High Yield 

Lehman U.S. 
High Yield 

UBS Warburg 
Conv. Global 

SSB High 
Yield Index 

Leh High Yld 
Ret − Treas. 

Leh High Yld 
Ret − Treas. 

JPM Brady 
Broad 

Lehman U.S. 
High Yield 

  0.475 0.589 0.531 0.543 0.510 0.272 0.381 0.611 0.779 

 3 SSB High 
Yield Index  

Leh High Yld 
Ret − Treas. 

Leh High Yld 
Ret − Treas. 

UBS Conv. 
Global − Treas 

JPM Brady 
Broad − Treas. 

Lehman U.S. 
High Yield 

SSB High 
Yield Index 

JPM Brady 
Broad − Treas. 

Leh High Yld 
Ret − Treas. 

  0.467 0.589 0.531 0.543 0.503 0.272 0.337 0.611 0.779 

 4 Small JPM Brady 
Broad 

JPM Brady 
Broad Float Small JPM Brady 

Broad 
SSB High 

Yield Index 
Chg in Leh High 
Yld Ret  − Treas 

JPM Brady 
Broad Fixed Small 

  0.368 0.563 0.426 0.516 0.502 0.255 0.317 0.598 0.625 

 5 UBS Warburg 
sub BBB / NR 

JPM Brady 
Broad − Treas. 

JPM Brady 
Broad NASDAQ Leh High Yld 

Ret − Treas. SMB NYBOT 
Dollar Index 

JPM Brady 
Broad Float 

Lipper Mutual 
Funds 

  0.353 0.563 0.423 0.512 0.477 0.238 0.305 0.593 0.623 

Bottom Five 1 Mortgage Rate 
− Treas. % Chg VXN JPM Non-U.S. 

Gov−Treasury % Chg VXN JPM Fixed − 
JPM Float 

Salomon 
WGBI 

CME Yen 
Futures 

Chg in U.S. 
Corp Baa Rate % Chg VXN 

  -0.207 -0.386 -0.190 -0.263 -0.330 -0.280 -0.476 -0.282 -0.433 

 2 Swap Rate − 
Treas. % Chg VIX % Chg VXN % Chg VIX % Chg VXN Lehman 

Treasury 
MSCI Wrld 
Sov Ex-USA % Chg VIX % Chg VIX 

  -0.204 -0.386 -0.176 -0.250 -0.284 -0.256 -0.340 -0.282 -0.417 

 3 Momentum Chg in FHA 
Mortgage 

Chg in FHA 
Mortgage 

Chg in FHA 
Mortgage % Chg VIX CME Yen 

Future 
JPM Non-U.S. 

Govt. Bond 
Chg in JPM 

Non-US Gov Bd 
JPM Fixed − 

JPM Float 
  -0.195 -0.293 -0.172 -0.240 -0.276 -0.255 -0.312 -0.268 -0.250 

 4 JPM Non-U.S. 
Gov−Treasury 

Swap Rate  − 
Treas. 

Chg in JPM 
Fixed − Float HML HML MSCI Wrld 

Sov Ex-USA 
Salomon 
WGBI % Chg VXN Chg in U.S. 

Corp Baa Rate 
  -0.188 -0.245 -0.166 -0.206 -0.243 -0.241 -0.308 -0.254 -0.232 

 5 Chg in JPM 
Non-US Gov Bd 

Chg in JPM 
Non-US Gov Bd 

Swap Rate − 
Treasury 

Chg in U.S. 
Corp Baa Rate 

CME Yen 
Futures 

JPM Non-U.S. 
Govt. Bond Japan HML CME Yen 

Futures 
Chg in JPM 

Fixed − Float 
  -0.180 -0.241 -0.162 -0.204 -0.218 -0.237 -0.207 -0.228 -0.210 
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TABLE 5  −  continued 

Top and Bottom Correlated Factors to Hedge Fund Indices 
January, 1994 – December, 2001 

 
  Distressed Securities Merger Arbitrage 
  FRM HFR Zurich FRM HFR Hennessee Zurich 

Top Five 1 Small Small Small Lipper Mutual 
Funds Small Russell 2000 Lipper Mutual 

Funds 
  0.809 0.753 0.775 0.612 0.553 0.647 0.702 

 2 Russell 2000 Russell 2000 Russell 2000 Russell 2000 Russell 2000 Small Small 

  0.800 0.750 0.770 0.601 0.550 0.642 0.700 

 3 Lipper Mutual 
Funds 

Lipper Mutual 
Funds 

Lipper Mutual 
Funds Small Manuf Lipper Mutual 

Funds Russell 2000 

  0.732 0.706 0.720 0.591 0.547 0.636 0.686 

 4 Wilshire 5000 Wilshire 5000 Wilshire 5000 Manuf Lipper Mutual 
Funds Manuf Wilshire 5000 

  0.681 0.674 0.702 0.570 0.540 0.572 0.657 

 5 Nasdaq JPM Brady 
Broad Float Big Wilshire 5000 JPM Brady 

Broad Float Wilshire 5000 SP Barra 
Value 

  0.677 0.662 0.670 0.563 0.524 0.570 0.635 

Bottom Five 1 % Chg VIX % Chg VIX % Chg VIX % Chg VIX % Chg VIX % Chg VIX % Chg VIX 

  -0.583 -0.586 -0.547 -0.462 -0.456 -0.508 -0.533 

 2 % Chg VXN % Chg VXN % Chg VXN % Chg VXN % Chg VXN % Chg VXN % Chg VXN 

  -0.575 -0.583 -0.505 -0.419 -0.393 -0.474 -0.485 

 3 HML HML HML HML JPM Fixed − 
JPM Float HML HML 

  -0.390 -0.360 -0.338 -0.250 -0.275 -0.247 -0.237 

 4 JPM Fixed − 
JPM Float 

JPM Fixed − 
JPM Float 

JPM Fixed − 
JPM Float 

Chg in JPM 
Fixed − Float 

Chg in JPM 
Fixed − Float 

JPM Fixed − 
JPM Float 

Chg in JPM 
Fixed − Float 

  -0.332 -0.318 -0.228 -0.217 -0.266 -0.234 -0.228 

 5 Chg in JPM 
Fixed − Float 

Chg in JPM 
Fixed − Float 

Chg in JPM 
Fixed − Float 

JPM Fixed − 
JPM Float Momentum Chg in U.S. 

Baa − Treas. 
Chg in U.S. 

Corp Baa Rate 
  -0.282 -0.228 -0.178 -0.195 -0.167 -0.197 -0.223 
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TABLE 5  −  continued 

Top and Bottom Correlated Factors to Hedge Fund Indices 
January, 1994 – December, 2001 

 
  MultiProcess  (Event Driven) 
  FRM HFR CSFB Hennessee Zurich 

Top Five 1 Russell 2000 Small JPM Brady 
Broad Float Small Small 

  0.775 0.835 0.742 0.709 0.747 

 2 Small Russell 2000 JPM Brady 
Broad − Treas. Russell 2000 Russell 2000 

  0.775 0.826 0.730 0.696 0.741 

 3 Lipper Mutual 
Funds 

Lipper Mutual 
Funds 

JPM Brady 
Broad 

Lipper Mutual 
Funds 

Lipper Mutual 
Funds 

  0.744 0.772 0.730 0.690 0.718 

 4 Wilshire 5000 UBS Warburg 
sub BBB / NR 

Lipper Mutual 
Funds Wilshire 5000 Wilshire 5000 

  0.709 0.736 0.716 0.657 0.674 

 5 UBS Warburg 
sub BBB / NR Wilshire 5000 Small JPM Brady 

Broad Float Low 

  0.695 0.715 0.701 0.636 0.647 

Bottom Five 1 % Chg VIX % Chg VIX % Chg VIX % Chg VIX % Chg VIX 

  -0.507 -0.517 -0.564 -0.518 -0.550 

 2 % Chg VXN % Chg VXN % Chg VXN % Chg VXN % Chg VXN 

  -0.449 -0.504 -0.532 -0.487 -0.502 

 3 HML HML JPM Fixed − 
JPM Float HML HML 

  -0.373 -0.363 -0.301 -0.268 -0.344 

 4 Chg in U.S. 
Corp Baa Rate 

JPM Fixed − 
JPM Float HML JPM Fixed − 

JPM Float 
JPM Fixed − 

JPM Float 
  -0.260 -0.230 -0.296 -0.240 -0.260 

 5 Japan HML Chg in U.S. 
Corp Baa Rate 

Chg in JPM 
Fixed − Float 

Chg in U.S. 
Corp Baa Rate 

Chg in JPM 
Fixed − Float 

  -0.169 -0.204 -0.268 -0.199 -0.234 
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TABLE 6 

Mapping of Hedge Fund Indices Using Only Index, French, and Interest Rate Factors 
January, 1994 – December, 2001 

 

 Int Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 R^2 
94  −  97 

R^2 
98  −  01 

Arbitrage 
Convertible         

FRM  
UBS 

Warburg sub 
BBB / NR 

    0.2514 0.1220 

coef: 0.0053 0.0062       
t-stat: 3.4276 4.4922       
inc. adj R^2:  0.1680       

HFR  SSB High 
Yield Index 

UBS 
Warburg sub 
BBB / NR 

Dow Jones 
Commodity   0.5047 0.5100 

coef: 0.0036 0.0054 0.0049 0.0033     
t-stat: 2.8865 4.3297 3.7409 2.8520     
inc. adj R^2:  0.3279 0.4201 0.4614     

CSFB  SSB High 
Yield Index     0.2009 0.3017 

coef: 0.0028 0.0111       
t-stat: 1.1700 5.4324       
inc. adj R^2:  0.2308       

Henn  
UBS 

Warburg sub 
BBB / NR 

    0.3999 0.3800 

coef: 0.0011 0.0106       
t-stat: 0.7329 7.7356       
inc. adj R^2:  0.3825       
Arbitrage 

Fixed 
Income 

        

FRM  Lehman U.S. 
High Yield 

Lehman U.S. 
Treasury 

US Credit 
Bond   0.1036 0.4616 

coef: 0.0062 0.0062 − 0.0216 0.0181     
t-stat: 2.7561 2.3314 − 5.1961 3.5692     
inc. adj R^2:  0.1951 0.3089 0.3864     

HFR  
Chg in 10 

Yr. US Swap 
Rate 

Lehman 
Mortgage 

Backed Secs 

SSB High 
Yield Index 

U.S. Real 
Estate  − 0.0099 0.5750 

coef: 0.0097 0.0209 0.0145 0.0063 − 0.0047    
t-stat: 3.9831 7.1353 5.0697 3.8844 − 2.9352    
inc. adj R^2:  0.0978 0.3095 0.3550 0.4043    

CSFB  CME Yen 
Futures 

Lehman U.S. 
High Yield    0.1875 0.3193 

coef: 0.0030 − 0.0065 0.0063      
t-stat: 1.6733 − 4.3337 4.2798      
inc. adj R^2:  0.1425 0.2759      

Credit 
Trading         

FRM  SSB High 
Yield Index 

JPM Brady 
Broad Fixed Utils   0.3657 0.5039 

coef: 0.0014 0.0090 0.0081 − 0.0045     
t-stat: 0.7735 4.8513 3.6629 − 2.6876     
inc. adj R^2:  0.3686 0.4217 0.4580     

HFR  SSB High 
Yield Index 

JPM Fixed − 
JPM Float 

Chg in U.S. 
High Yld 

Ind − Treas. 

Chg in 10 
Yr. US 

Swap Rate 

US Credit 
Bond 0.7243 0.7986 

coef: 0.0015 0.0114 − 0.0014 0.0044 0.0105 0.0065   
t-stat: 1.1562 9.6687 − 1.0031 3.6936 4.7327 3.0569   
inc. adj R^2:  0.6120 0.7034 0.7221 0.7524 0.7732   
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TABLE 6  −  continued 

Mapping of Hedge Fund Indices Using Only Index, French, and Interest Rate Factors 
January, 1994 – December, 2001 

 

 Int Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 R^2 
94  −  97 

R^2 
98  −  01 

Distressed 
Securities         

FRM  Small SSB High 
Yield Index 

JPM Fixed 
− JPM Float 

Chg in UBS 
Global − 

Treas 

JPM Brady 
Broad 
Fixed  

0.5704  0.7769 

coef: 0.0024 0.0076 0.0045 − 0.0047 0.0037 0.0040   
t-stat: 2.1040 5.5665 3.5358 − 4.3205 2.9980 2.6896   
inc. adj R^2:  0.5721 0.6294 0.6698 0.6983 0.7177   

HFR  Small JPM Brady 
Broad Float 

Chg in UBS 
Global − 

Treas. 
  0.6216  0.6191 

coef: 0.0011 0.0102 0.0065 0.0051     
t-stat: 0.7093 5.7433 3.5316 3.0780     
inc. adj R^2:  0.5207 0.5747 0.6102     

Zurich  Small SSB High 
Yield Index    0.6795  0.6644 

coef: 0.0005 0.0152 0.0056      
t-stat: 0.3040 9.6139 3.6835      
inc. adj R^2:  0.6189 0.6638      

Merger 
Arbitrage         

FRM  Small Hlth    0.3708 0.4462 

coef: 0.0048 0.0049 0.0032      
t-stat: 5.1244 5.5430 3.4892      
inc. adj R^2:  0.3401 0.4102      

HFR  Small Hlth Momentum   0.0375 0.4709 

coef: 0.0048 0.0043 0.0031 − 0.0024     
t-stat: 4.8509 4.6243 3.1930 − 2.7543     
inc. adj R^2:  0.2594 0.3081 0.3539     

Hennessee  Small Hlth    0.3894 0.4336 

coef: 0.0040 0.0046 0.0022      
t-stat: 4.8311 5.9782 2.7976      
inc. adj R^2:  0.3610 0.4043      

Zurich  Small SP Barra 
Value    0.4687 0.5105 

coef: 0.0038 0.0056 0.0033      
t-stat: 4.1175 5.5077 3.1887      
inc. adj R^2:  0.4414 0.4910      
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TABLE 6  −  continued 

Mapping of Hedge Fund Indices Using Only Index, French, and Interest Rate Factors 
January, 1994 – December, 2001 

 

 Int Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 R^2 
94  −  97 

R^2 
98  −  01 

MultiProcess
(Event 
Driven) 

        

FRM  
UBS 

Warburg sub 
BBB / NR 

Lipper 
Mutual 
Funds 

JPM Brady 
Broad SMB HiTec 0.6786 0.7872 

coef: 0.0067 0.0065 0.0100 0.0036 0.0038 − 0.0058   
t-stat: 6.0896 4.1120 5.1673 2.7015 3.7883 − 3.5592   
inc. adj R^2:  0.5783 0.6451 0.6721 0.6968 0.7312   

HFR  Small JPM Brady 
Broad Fixed 

UBS 
Warburg 

AAA / AA 
  0.4889 0.7888 

coef: 0.0037 0.0115 0.0058 0.0038     
t-stat: 2.9355 8.9383 4.1595 3.1280     
inc. adj R^2:  0.6087 0.6673 0.6960     

CSFB  JPM Brady 
Ind.  − Treas. Small SSB High 

Yield Index 
MSCI 10 

Yr + 

Chg in UBS 
Global Ind. 

− Treas. 
0.5880 0.6799 

coef: 0.0023 0.0090 0.0051 0.0061 − 0.0047 0.0049   
t-stat: 1.4340 4.4835 2.7219 3.5358 − 3.1348 2.8593   
inc. adj R^2:  0.4286 0.5471 0.5838 0.6133 0.6416   

Hennessee  Small JPM Brady 
Broad Fixed    0.3008 0.5576 

coef: 0.0030 0.0091 0.0073      
t-stat: 1.8677 5.5156 3.9733      
inc. adj R^2:  0.3933 0.4758      

Zurich  Small 
Chg in U.S. 
High Yld. 

Ind.  − Treas. 
   0.3535 0.6308 

coef: 0.0031 0.0082 0.0037      
t-stat: 2.9362 8.1162 3.6981      
inc. adj R^2:  0.4808 0.5425      
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TABLE 7 

Mapping of Hedge Fund Indices Using All Factors 
January, 1994 – December, 2001 

 

 Int Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 R^2 
94  −  97 

R^2 
98  −  01 

Arbitrage 
Convertible         

FRM  
UBS Warburg 
sub BBB / NR 

Put At 
    0.2288 0.2157 

coef: 0.0066 − 0.0075       
t-stat: 4.4674 − 5.1001       
inc. adj R^2:  0.2084       

HFR  
UBS Warburg 
sub BBB / NR 

Dir (−) 

SSB High 
Yield Index 

SP500 Put 
Deep   0.5211 0.5606 

coef: 0.0081 0.0091 0.0038 − 0.0041     
t-stat: 5.3799 3.3306 3.1281 − 2.7633     
inc. adj R^2:  0.4058 0.4750 0.5100     

CSFB  
UBS Warburg 
sub BBB / NR 
Put Shallow 

SSB High 
Yield Index VIX Put At   0.3517 0.5358 

coef: 0.0037 − 0.0113 0.0076 − 0.0069     
t-stat: 1.8053 − 5.1229 3.8691 − 3.4017     
inc. adj R^2:  0.3046 0.3742 0.4380     

Henn  
UBS 

Warburg sub 
BBB / NR 

Wrld Ex-
U.S. Real 

Estate 
NoDur   0.4706 0.4908 

coef: 0.0059 0.0103 0.0079 − 0.0044     
t-stat: 3.1587 7.4949 3.6034 − 3.0301     
inc. adj R^2:  0.3825 0.4201 0.4670     
Arbitrage 

Fixed 
Income 

        

FRM  
UBS Warburg 
sub BBB / NR 
Put Shallow 

Nikkei 
Phil 

Gold/Silver 
Call Deep 

SSB High 
Yield Index  0.0085 0.5404 

coef: 0.0046 − 0.0097 0.0054 − 0.0062 0.0054    
t-stat: 2.2336 − 4.3357 2.7808 − 3.0992 2.7326    
inc. adj R^2:  0.2756 0.3381 0.3852 0.4255    

HFR  
Phil 

Gold/Silver 
Call Deep 

EAFE Put 
Shallow 

SP Barra 
Growth 
Dir (+) 

UBS Warburg 
sub BBB / 
NR Dir (+) 

Nikkei Call 
Shallow 0.1710 0.5840 

coef: 0.0049 − 0.0080 − 0.0056 − 0.0124 0.0081 0.0046   
t-stat: 2.1385 − 5.2221 − 3.5134 − 4.4889 2.9894 2.9892   
inc. adj R^2:  0.1863 0.2587 0.3087 0.3626 0.4138   

CSFB  
CME Yen 

Futures 
Dir (+) 

Lehman U.S. 
High Yield    0.1829 0.3729 

coef: 0.0084 − 0.0126 0.0061      
t-stat: 4.4466 − 5.0148 4.2699      
inc. adj R^2:  0.1894 0.3150      

Credit 
Trading         

FRM  SSB High 
Yield Index 

UBS Warburg 
sub BBB / NR 

Put Deep 
   0.3250 0.5278 

coef: 0.0028 0.0098 − 0.0079      
t-stat: 1.5937 6.1585 − 4.3989      
inc. adj R^2:  0.3686 0.4717      

HFR  SSB High 
Yield Index 

UBS Warburg 
sub BBB / NR 

Put Deep 

Chg in 10 
Yr. US 

Swap Rate 

Chg in U.S. 
High Yield 

− Treas. 

Phil Gold / 
Silver Put 

Deep 
0.7778 0.8357 

coef: −0.0002 0.0111 − 0.0031 0.0054 0.0045 − 0.0034   
t-stat: −0.2504 10.8868 − 2.9021 5.8319 4.4774 − 3.3067   
inc. adj R^2:  0.6120 0.7068 0.7561 0.7967 0.8167   
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TABLE 7  −  continued 

Mapping of Hedge Fund Indices Using All Factors 
January, 1994 – December, 2001 

 

 Int Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 R^2 
94  −  97 

R^2 
98  −  01 

Distressed 
Securities         

FRM  
UBS Warburg 
sub BBB / NR 

Put At 
Small VIX Call 

Deep 

UBS Warburg 
sub BBB / 
NR Dir (−) 

SSB High 
Yield 
Index

0.5596 0.8491 

coef: −0.0012 − 0.0127 0.0088 − 0.0036 − 0.0142 0.0031   
t-stat: −0.6014 − 5.1373 6.7764 − 2.9152 − 3.2286 2.9219   
inc. adj R^2:  0.5795 0.7036 0.7360 0.7535 0.7724   

HFR  
UBS Warburg 
sub BBB / NR 

Put At 
Small 

UBS Warburg 
sub BBB / 
NR Dir (−) 

VIX Call 
Deep 

Salomon 
WGBI Put 
Shallow 

0.6199 0.7912 

coef: −0.0026 − 0.0162 0.0099 − 0.0177 − 0.0058 − 0.0037   
t-stat: −1.0950 − 5.3215 6.1948 − 3.2873 − 3.7787 − 2.9311   
inc. adj R^2:  0.5487 0.6532 0.6928 0.7207 0.7422   

Zurich  Small 
UBS Warburg 
sub BBB / NR 

Put Deep 

Chg in U.S. 
High Yield 

− Treas. 

Europe 
HML  0.6611 0.8598 

coef: 0.0025 0.0139 − 0.0086 0.0036 0.0028    
t-stat: 1.9619 10.9207 − 6.5710 3.0341 2.6556    
inc. adj R^2:  0.6189 0.7362 0.7606 0.7754    

Merger 
Arbitrage         

FRM  
UBS Warburg 
sub BBB / NR 

Put At 

UBS Warburg 
AAA / AA 

Dir (+) 

EAFE Put 
Deep   0.3506 0.6367 

coef: 0.0049 − 0.0051 0.0038 − 0.0030     
t-stat: 4.7900 − 5.3108 3.3493 − 3.1623     
inc. adj R^2:  0.4190 0.4781 0.5241     

HFR  
UBS Warburg 
sub BBB / NR 

Put At 
EAFE Put 

Deep    − 0.0131 0.5873 

coef: 0.0065 − 0.0045 − 0.0039      
t-stat: 7.3344 − 4.3459 − 3.7366      
inc. adj R^2:  0.3528 0.4312      

Hennessee  
UBS Warburg 
sub BBB / NR 

Put At 
VIX Call At 

UBS Warburg 
AAA / AA 

Dir (+) 
  0.4413 0.5943 

coef: 0.0046 − 0.0045 − 0.0029 0.0026     
t-stat: 5.1053 − 5.4683 − 3.5397 2.6626     
inc. adj R^2:  0.4413 0.5105 0.5406     

Zurich  
UBS Warburg 
sub BBB / NR 

Put At 
VIX Call At 

U.S. Real 
Estate Call 

Deep 
Small  0.6283 0.7073 

coef: 0.0053 − 0.0048 − 0.0035 0.0022 0.0026    
t-stat: 6.9490 − 4.7748 − 3.9380 2.9718 2.9331    
inc. adj R^2:  0.5228 0.6005 0.6433 0.6706    
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TABLE 7  −  continued 

Mapping of Hedge Fund Indices Using All Factors 
January, 1994 – December, 2001 

 

 Int Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 R^2 
94  −  97 

R^2 
98  −  01 

MultiProcess
(Event 
Driven) 

        

FRM  
UBS 

Warburg sub 
BBB / NR 

VIX Call At Small NASDAQ EAFE Put 
Deep 0.6832 0.8209 

coef: 0.0078 0.0093 − 0.0035 0.0106 − 0.0081 − 0.0043   
t-stat: 7.3212 5.7979 − 2.7075 5.4002 − 3.8480 − 3.6557   
inc. adj R^2:  0.5783 0.6498 0.6824 0.7158 0.7498   

HFR  Small 
UBS Warburg 
sub BBB / NR 

Put At 

UBS Warburg 
AAA / AA 

Dir (+) 

JPM Brady 
Broad 
Fixed 

 0.5119 0.8717 

coef: 0.0022 0.0079 − 0.0072 0.0060 0.0040    
t-stat: 1.6354 5.8624 − 5.0407 3.7844 3.0798    
inc. adj R^2:  0.6087 0.7041 0.7389 0.7610    

CSFB  
UBS Warburg 
sub BBB / NR 

Put At 
JPM Brady 

Broad 
Europe 

High BM 

UBS Warburg 
sub BBB / 
NR Dir (−) 

UBS Warburg 
sub BBB / 
NR Call At 

0.5924 0.8972 

coef: −0.0076 −0.0269 0.0072 0.0039 −0.0266 0.0046   
t-stat: −3.5288 −10.4792 5.1674 3.4199 −5.5171 3.4892   
inc. adj R^2:  0.6571 0.7219 0.7576 0.7969 0.8191   

Hennessee  
UBS Warburg 
sub BBB / NR 

Put At 

U.S. Real 
Estate Call 

Deep 
VIX Call At 

UBS Warburg 
sub BBB / 
NR Call At 

Pacific Rim 
HML 0.4765 0.7325 

coef: 0.0028 −0.0001 0.0053 −0.0030 0.0037 −0.0056   
t-stat: 2.5568 −0.0541 4.5413 −2.8725 2.9826 −2.7124   
inc. adj R^2:  0.4705 0.5375 0.5871 0.6128 0.6401   

Zurich  
UBS Warburg 
sub BBB / NR 

Put At 
Russell 2000 VIX Call 

Shallow 
UBS Warburg 

AAA / AA 
Dir (+) 

UBS Warburg 
sub BBB / 

NR Put Deep 
0.5129 0.8029 

coef: 0.0028 − 0.0001 0.0053 − 0.0030 0.0037 − 0.0056   
t-stat: 2.5568 − 0.0541 4.5413 − 2.8725 2.9826 − 2.7124   
inc. adj R^2:  0.5275 0.6219 0.6597 0.6839 0.7045   
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TABLE 8 

Index Factors 
Value-at-Risk Estimation 

Index Factors Six Month Analysis One Year Analysis 

50,000 simulations Mean Std Dev Min 1 
Percentile 

5 
Percentile Mean Std Dev Min 1 

Percentile 
5 

Percentile 
SP500 4.68 11.09 -43.09 -21.25 -13.63 9.82 16.52 -48.37 -26.07 -16.42 
DJIA 5.10 11.61 -42.78 -21.52 -13.96 10.37 17.11 -50.60 -26.62 -16.80 
NASDAQ 5.26 21.85 -64.56 -39.97 -28.58 10.92 33.04 -74.62 -49.51 -36.57 
Russell 2000 2.79 13.97 -49.46 -28.90 -19.72 5.48 20.37 -56.68 -36.42 -25.82 
Wilshire 5000 3.54 11.33 -40.08 -23.16 -15.34 7.08 16.62 -51.46 -29.09 -19.43 
SP Barra Growth 4.48 12.64 -41.34 -24.27 -16.11 9.20 18.82 -49.25 -30.06 -20.06 
SP Barra Value 3.01 10.66 -44.46 -22.21 -14.77 6.22 15.68 -47.40 -27.91 -18.52 
MSCI World 2.22 10.01 -37.22 -21.19 -14.32 4.53 14.58 -46.74 -27.06 -18.50 
Nikkei -4.00 14.20 -48.19 -32.45 -25.44 -7.64 19.43 -64.10 -44.07 -35.94 
FTSE 0.82 9.44 -32.68 -21.02 -14.69 1.49 13.43 -47.44 -27.10 -19.75 
EAFE -0.10 10.27 -39.54 -23.10 -16.76 -0.33 14.58 -50.10 -30.89 -22.91 
Lipper Mut Funds 3.79 10.97 -41.25 -22.44 -14.57 7.66 16.16 -48.13 -27.91 -18.11 
MSCI AAA -0.61 6.71 -24.24 -14.46 -10.87 -1.29 9.41 -32.82 -20.46 -15.55 
MSCI 10 Yr + 1.30 5.82 -20.31 -11.81 -8.15 2.66 8.27 -28.70 -15.50 -10.42 
MSCI Wld Sov Ex-USA -0.57 5.62 -23.91 -12.62 -9.32 -1.14 7.92 -30.17 -17.67 -13.34 
UBS Warburg AAA / AA 4.18 9.10 -34.22 -15.58 -9.83 8.43 13.32 -38.14 -18.89 -11.78 
UBS Warburg sub BBB / NR 4.55 15.11 -48.50 -27.20 -18.69 9.18 22.28 -60.85 -34.57 -23.52 
CBT Municipal Bond -2.51 5.37 -28.16 -15.12 -11.33 -4.91 7.45 -39.01 -21.62 -16.99 
Leh Bros Gov/Corp 0.80 2.25 -7.87 -4.34 -2.85 1.58 3.24 -10.82 -5.73 -3.66 
US Credit Bond -2.64 3.38 -15.35 -10.43 -8.17 -5.10 4.67 -23.11 -15.54 -12.62 
Salomon WGBI -0.27 4.22 -17.71 -9.33 -6.92 -0.48 5.95 -22.67 -13.26 -9.74 
CME Goldman Commodity -0.33 12.91 -40.71 -25.81 -19.45 -0.56 18.28 -51.14 -35.15 -26.89 
Dow Jones Commodity -3.55 12.13 -66.89 -43.03 -33.19 -6.98 16.65 -80.39 -50.83 -41.07 
Philadelphia Gold / Silver -2.86 25.42 -65.95 -46.73 -37.16 -5.56 35.61 -79.38 -60.09 -49.90 
Wld Ex-US Real Estate -0.86 14.72 -59.14 -36.17 -25.19 -1.76 20.66 -71.94 -45.60 -33.86 
U.S. Real Estate 2.45 12.33 -40.28 -24.38 -17.02 4.93 17.91 -51.50 -31.16 -22.19 
CME Yen Futures -2.86 9.51 -32.80 -21.04 -16.49 -5.52 13.21 -45.55 -29.90 -24.24 
NYBOT Dollar Index -0.95 5.16 -21.07 -12.26 -9.11 -1.84 7.28 -27.15 -17.49 -13.22 
NYBOT Orange Juice -1.01 21.31 -64.08 -41.72 -31.82 -1.65 30.13 -74.32 -53.52 -42.77 
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TABLE 9 

Ken French Factors 
Value-at-Risk Estimation 

Index Factors Six Month Analysis One Year Analysis 

50,000 simulations Mean Std Dev Min 1 
Percentile 

5 
Percentile Mean Std Dev Min 1 

Percentile 
5 

Percentile 
SMB -1.89 9.59 -35.49 -21.67 -16.30 -3.82 13.28 -42.80 -30.09 -23.37 
HML -2.39 11.67 -50.91 -31.44 -22.62 -4.74 16.12 -66.99 -40.62 -30.67 
Low 4.60 12.31 -42.01 -23.61 -15.77 9.35 18.26 -54.23 -29.50 -19.47 
High 4.32 10.06 -37.94 -17.89 -11.77 8.84 15.00 -45.03 -22.49 -14.36 
Big 4.62 11.29 -43.58 -21.86 -14.00 9.33 16.80 -54.30 -27.19 -17.35 
Small 4.32 14.91 -52.45 -29.24 -19.70 9.05 22.12 -60.07 -36.52 -24.73 
Momentum 3.55 13.70 -55.56 -30.65 -19.40 7.09 20.16 -63.66 -37.10 -24.64 
Europe High BM 5.46 13.53 -50.76 -25.95 -16.79 11.05 20.41 -55.74 -32.18 -20.57 
Europe Low BM 2.42 11.51 -41.65 -23.11 -16.10 4.91 16.74 -57.93 -29.86 -20.97 
Europe HML 0.60 8.07 -39.68 -18.68 -12.59 1.13 11.48 -45.80 -24.40 -17.18 
UK High BM 2.93 11.56 -38.66 -22.80 -15.64 6.03 16.96 -48.87 -29.01 -20.08 
UK Low BM 2.51 9.71 -33.17 -19.06 -13.15 5.00 14.20 -40.52 -25.02 -17.30 
UK HML -1.79 8.61 -35.12 -21.13 -15.36 -3.55 11.88 -42.54 -28.76 -22.04 
Pacific Rim High BM 0.68 18.34 -46.53 -32.15 -24.71 1.17 26.39 -62.15 -43.12 -34.03 
Pacific Rim Low BM -4.53 13.51 -47.15 -31.39 -25.02 -8.80 18.37 -60.81 -43.30 -35.49 
Pacific Rim HML 3.00 12.90 -48.59 -24.46 -16.73 5.79 18.92 -51.14 -31.40 -21.93 
Japan High BM 1.24 21.16 -52.11 -34.89 -27.21 2.90 30.81 -62.41 -47.03 -36.83 
Japan Low BM -4.81 14.98 -48.91 -33.77 -26.97 -9.49 20.19 -62.51 -46.25 -38.14 
Japan HML 4.21 15.61 -47.22 -27.01 -18.77 8.33 22.87 -53.33 -34.22 -23.98 
NoDurbl 3.94 10.29 -37.81 -19.69 -12.83 8.10 15.08 -46.03 -24.35 -15.67 
Durbl 5.48 14.46 -39.47 -24.55 -16.68 11.29 21.72 -56.39 -31.21 -20.88 
Manuf 3.09 10.89 -46.44 -21.96 -14.57 6.23 15.98 -53.93 -28.02 -18.78 
Enrgy 3.93 12.70 -33.89 -21.20 -14.94 7.95 18.73 -45.90 -27.42 -19.28 
HiTec 8.69 23.79 -63.03 -39.99 -27.97 18.07 37.23 -75.36 -48.84 -34.86 
Telcm 2.24 16.13 -52.43 -32.26 -22.97 4.63 23.54 -64.64 -41.67 -30.27 
Shops 4.58 12.07 -38.96 -21.60 -14.44 9.18 18.02 -47.35 -27.34 -18.20 
Hlth 7.71 12.30 -39.27 -19.35 -12.08 16.06 18.90 -46.20 -23.13 -13.14 
Utils 2.55 10.82 -34.46 -20.45 -14.35 5.12 15.71 -47.13 -26.47 -18.77 
Other 5.19 12.26 -46.45 -24.34 -14.85 10.50 18.39 -57.02 -29.64 -18.51 
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TABLE 10 
Value-at-Risk Estimation 

Excess Returns 

    Six Month Analysis One Year Analysis 

50,000 simulations    Mean Std Dev Min 1 
Percentile 

5 
Percentile Mean Std Dev Min 1 

Percentile 
5 

Percentile 
Arbitrage Convertible FRM Index, French Normal 4.09 4.14 -11.14 -5.20 -2.63 8.34 6.10 -17.37 -5.22 -1.40 
   T-dist 4.10 5.63 -71.06 -9.12 -4.71 8.28 8.22 -50.33 -10.44 -4.68 
  All Normal 4.08 4.14 -14.31 -5.98 -2.79 8.31 6.10 -18.32 -5.93 -1.65 
   T-dist 4.04 5.53 -37.21 -9.55 -4.94 8.31 8.21 -52.34 -10.63 -4.68 
  Historical  4.05 4.10 -15.82 -5.62 -2.63 8.33 6.05 -16.55 -5.46 -1.46 
 HFR Index, French Normal 3.06 4.06 -13.64 -6.42 -3.64 6.19 5.91 -17.96 -7.26 -3.34 
   T-dist 3.07 5.04 -43.26 -8.80 -5.04 6.25 7.33 -56.24 -10.38 -5.42 
  All Normal 3.06 4.02 -16.26 -7.16 -3.86 6.19 5.89 -18.87 -7.94 -3.70 
   T-dist 3.06 4.91 -31.81 -8.94 -5.08 6.17 7.16 -44.28 -10.57 -5.43 
  Historical  3.11 3.87 -16.93 -7.32 -3.80 6.26 5.66 -21.35 -7.92 -3.42 
 CSFB Index, French Normal 2.90 6.60 -24.06 -11.74 -7.67 5.95 9.66 -29.45 -14.88 -9.21 
   T-dist 2.99 8.78 -99.61 -17.06 -10.72 6.07 12.76 -97.37 -21.67 -13.69 
  All Normal 2.93 6.66 -29.81 -14.36 -8.56 5.99 9.66 -35.24 -17.17 -10.05 
   T-dist 2.96 8.28 -72.27 -17.33 -10.60 5.90 12.03 -57.70 -21.66 -13.14 
  Historical  2.93 7.27 -31.81 -16.42 -9.77 5.96 10.57 -44.07 -19.54 -11.67 
 Henn Index, French Normal 2.07 4.68 -15.71 -8.32 -5.42 4.22 6.80 -20.40 -10.61 -6.60 
   T-dist 2.15 5.98 -45.26 -11.68 -7.24 4.30 8.67 -99.74 -15.24 -9.27 
  All Normal 2.09 4.68 -17.11 -8.86 -5.59 4.27 6.79 -21.95 -11.09 -6.71 
   T-dist 2.09 5.81 -76.74 -11.56 -7.26 4.27 8.39 -49.07 -14.82 -9.03 
  Historical  2.18 4.52 -18.58 -9.18 -5.48 4.40 6.48 -22.72 -10.95 -6.30 
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TABLE 10 - continued 
Value-at-Risk Estimation 

Excess Returns 

    Six Month Analysis One Year Analysis 

50,000 simulations    Mean Std Dev Min 1 
Percentile 

5 
Percentile Mean Std Dev Min 1 

Percentile 
5 

Percentile 
Arbitrage Fixed Income FRM Index, French Normal 2.66 6.55 -27.22 -12.81 -7.93 5.44 9.56 -32.68 -16.16 -9.96 
   T-dist 2.65 8.24 -51.27 -16.70 -10.59 5.43 12.06 -95.22 -21.44 -13.37 
  All Normal 2.69 6.55 -29.90 -14.10 -8.48 5.42 9.49 -36.07 -17.09 -10.22 
   T-dist 2.68 8.19 -62.24 -17.13 -10.77 5.36 11.90 -73.17 -21.84 -13.66 
  Historical  2.68 6.23 -32.24 -15.55 -9.22 5.40 9.02 -38.69 -18.30 -10.69 
 HFR Index, French Normal 0.23 4.80 -19.26 -10.72 -7.55 0.45 6.82 -30.45 -14.75 -10.50 
   T-dist 0.26 6.11 -43.01 -14.00 -9.47 0.47 8.58 -85.42 -18.61 -12.94 
  All Normal 0.22 4.80 -23.14 -11.99 -7.96 0.43 6.82 -33.38 -15.96 -10.80 
   T-dist 0.20 6.11 -73.96 -14.81 -9.76 0.42 8.63 -51.77 -19.58 -13.37 
  Historical  0.18 4.59 -27.55 -12.30 -8.23 0.47 6.51 -32.03 -16.26 -10.75 
 CSFB Index, French Normal 0.97 4.68 -16.16 -9.58 -6.60 1.97 6.77 -22.96 -12.87 -8.82 
   T-dist 1.03 6.15 -47.45 -13.39 -8.75 1.95 8.77 -69.18 -17.77 -11.73 
  All Normal 0.98 4.69 -20.42 -9.96 -6.75 1.94 6.69 -25.41 -13.14 -8.85 
   T-dist 0.95 6.14 -50.84 -13.57 -8.81 1.98 8.71 -43.67 -17.71 -11.78 
  Historical  0.95 4.13 -21.45 -10.82 -6.85 1.87 5.94 -25.13 -13.68 -8.64 
Credit Trading FRM Index, French Normal 2.44 5.77 -19.80 -10.80 -6.96 5.02 8.43 -24.36 -13.45 -8.39 
   T-dist 2.44 7.14 -54.16 -14.13 -8.92 5.04 10.45 -63.00 -17.84 -11.32 
  All Normal 2.49 5.80 -28.28 -12.68 -7.46 5.02 8.36 -35.10 -15.44 -9.05 
   T-dist 2.52 7.13 -51.46 -15.28 -9.17 5.03 10.31 -48.36 -19.05 -11.65 
  Historical  2.42 5.32 -26.32 -12.24 -7.21 4.90 7.67 -30.68 -14.28 -8.16 
 HFR Index, French Normal 0.56 4.95 -23.96 -11.88 -7.97 1.10 7.09 -32.71 -15.72 -10.66 
   T-dist 0.56 5.48 -23.63 -13.07 -8.61 1.12 7.83 -45.20 -17.04 -11.66 
  All Normal 0.56 4.93 -33.95 -13.00 -8.32 1.11 7.07 -32.75 -16.80 -11.11 
   T-dist 0.53 5.36 -28.40 -13.68 -8.81 1.14 7.68 -34.05 -18.07 -11.95 
  Historical  0.50 4.85 -27.67 -13.39 -8.67 1.04 6.91 -37.49 -17.28 -11.12 
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TABLE 10  −  continued 
Value-at-Risk Estimation 

Excess Returns 

    Six Month Analysis One Year Analysis 

50,000 simulations    Mean Std Dev Min 1 
Percentile 

5 
Percentile Mean Std Dev Min 1 

Percentile 
5 

Percentile 
Distressed Securities FRM Index, French Normal 3.29 5.17 -19.52 -9.34 -5.41 6.69 7.55 -25.03 -11.16 -5.77 
   T-dist 3.31 5.87 -29.91 -10.89 -6.35 6.70 8.49 -30.05 -12.67 -7.10 
  All Normal 3.31 5.14 -26.86 -11.84 -6.30 6.65 7.57 -32.79 -13.56 -6.86 
   T-dist 3.29 5.71 -52.91 -12.66 -7.03 6.69 8.31 -35.54 -14.49 -7.72 
  Historical  3.29 4.91 -26.32 -11.70 -6.01 6.71 7.15 -29.03 -12.60 -6.24 
 HFR Index, French Normal 2.67 5.99 -26.58 -10.98 -7.09 5.44 8.65 -36.79 -13.83 -8.39 
   T-dist 2.68 6.99 -71.05 -13.38 -8.56 5.44 10.19 -42.66 -17.11 -10.70 
  All Normal 2.65 5.97 -34.85 -15.21 -8.59 5.50 8.67 -41.38 -17.42 -9.94 
   T-dist 2.68 6.67 -37.49 -15.77 -9.23 5.44 9.79 -71.59 -19.17 -11.36 
  Historical  2.67 5.40 -33.59 -13.55 -7.38 5.43 7.87 -39.60 -15.48 -8.68 
 Zurich Index, French Normal 2.65 6.33 -22.37 -11.78 -7.66 5.31 9.22 -30.63 -15.15 -9.43 
   T-dist 2.68 7.33 -43.69 -14.16 -9.12 5.27 10.69 -82.58 -18.34 -11.61 
  All Normal 2.68 6.32 -40.82 -15.12 -8.65 5.26 9.23 -41.73 -18.01 -10.70 
   T-dist 2.64 7.01 -41.79 -16.26 -9.36 5.28 10.19 -51.65 -19.79 -11.99 
  Historical  2.61 6.35 -31.17 -16.06 -9.65 5.34 9.22 -38.97 -19.03 -11.30 
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TABLE 10  −  continued 
Value-at-Risk Estimation 

Excess Returns 

    Six Month Analysis One Year Analysis 

50,000 simulations    Mean Std Dev Min 1 
Percentile 

5 
Percentile Mean Std Dev Min 1 

Percentile 
5 

Percentile 
Merger Arbitrage FRM Index, French Normal 4.14 2.89 -7.05 -2.50 -0.57 8.44 4.27 -9.87 -1.29 1.49 
   T-dist 4.10 3.63 -20.01 -4.51 -1.70 8.43 5.36 -31.35 -3.97 -0.16 
  All Normal 4.12 2.89 -12.64 -4.13 -1.02 8.40 4.28 -12.57 -2.81 0.97 
   T-dist 4.13 3.52 -30.46 -5.17 -1.86 8.39 5.14 -17.72 -4.32 -0.25 
  Historical  4.10 3.02 -17.83 -4.67 -1.66 8.39 4.48 -19.19 -3.83 0.33 
 HFR Index, French Normal 3.76 2.90 -7.37 -2.87 -1.00 7.67 4.26 -8.86 -2.00 0.77 
   T-dist 3.74 3.72 -32.51 -5.04 -2.21 7.68 5.45 -32.75 -4.75 -0.99 
  All Normal 3.76 2.88 -12.83 -4.40 -1.40 7.63 4.23 -14.64 -3.40 0.25 
   T-dist 3.75 3.63 -24.77 -5.83 -2.40 7.66 5.31 -26.12 -5.36 -1.08 
  Historical  3.71 3.36 -16.20 -6.68 -2.98 7.62 4.94 -26.95 -6.14 -1.46 
 Henn Index, French Normal 3.37 2.50 -7.45 -2.44 -0.75 6.87 3.67 -7.54 -1.42 0.89 
   T-dist 3.39 3.17 -21.71 -4.16 -1.68 6.88 4.62 -15.19 -3.90 -0.54 
  All Normal 3.37 2.50 -10.29 -3.50 -1.05 6.89 3.67 -11.42 -2.68 0.58 
   T-dist 3.38 3.04 -14.27 -4.61 -1.80 6.88 4.40 -39.41 -4.00 -0.51 
  Historical  3.38 2.88 -13.75 -5.17 -2.16 6.83 4.23 -17.04 -4.78 -0.79 
 Zurich Index, French Normal 3.34 3.15 -10.43 -4.04 -1.84 6.76 4.59 -11.55 -3.68 -0.75 
   T-dist 3.32 3.85 -38.08 -5.86 -2.88 6.77 5.65 -33.75 -6.28 -2.23 
  All Normal 3.31 3.14 -15.54 -5.38 -2.26 6.78 4.58 -20.12 -4.77 -1.20 
   T-dist 3.36 3.60 -19.01 -6.14 -2.85 6.83 5.27 -23.25 -6.29 -2.04 
  Historical  3.34 3.32 -17.53 -6.86 -3.21 6.80 4.83 -21.75 -6.93 -2.03 
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TABLE 10  −  continued 
Value-at-Risk Estimation 

Excess Returns 

    Six Month Analysis One Year Analysis 

50,000 simulations    Mean Std Dev Min 1 
Percentile 

5 
Percentile Mean Std Dev Min 1 

Percentile 
5 

Percentile 
FRM Index, French Normal 5.48 4.97 -14.69 -6.04 -2.66 11.19 7.48 -18.30 -5.75 -0.96 MultiProcess 

(Event Driven)   T-dist 5.49 5.57 -32.92 -7.28 -3.60 11.18 8.38 -26.78 -7.65 -2.16 
  All Normal 5.46 4.97 -22.06 -7.10 -3.00 11.26 7.41 -20.37 -6.34 -1.12 
   T-dist 5.48 5.57 -28.54 -8.27 -3.91 11.20 8.36 -40.35 -8.47 -2.43 
  Historical  5.49 5.42 -24.09 -8.88 -3.70 11.30 8.05 -27.34 -8.05 -2.04 
 HFR Index, French Normal 4.83 5.46 -16.85 -7.90 -4.15 9.86 8.05 -19.00 -8.16 -3.11 
   T-dist 4.77 6.21 -37.58 -9.66 -5.27 9.75 9.18 -43.40 -10.85 -4.90 
  All Normal 4.80 5.44 -23.32 -9.25 -4.48 9.86 8.06 -25.68 -9.64 -3.65 
   T-dist 4.81 6.02 -35.74 -10.09 -5.30 9.83 8.96 -50.27 -11.43 -4.87 
  Historical  4.80 5.38 -23.33 -10.21 -4.61 9.84 8.05 -29.88 -10.51 -3.94 
 CSFB Index, French Normal 3.35 6.42 -25.67 -12.26 -7.45 6.80 9.31 -31.45 -14.24 -8.34 
   T-dist 3.33 7.38 -41.63 -14.23 -8.74 6.84 11.00 -58.39 -17.83 -10.70 
  All Normal 3.42 6.32 -36.23 -17.44 -9.85 6.73 9.38 -42.40 -19.60 -11.78 
   T-dist 3.33 6.96 -38.27 -18.28 -10.61 6.80 10.09 -45.44 -20.67 -12.11 
  Historical  3.33 6.47 -36.21 -18.59 -12.45 6.85 9.41 -45.03 -20.38 -12.72 
 Henn Index, French Normal 3.76 5.45 -19.05 -8.74 -5.14 7.68 7.98 -19.65 -10.07 -5.11 
   T-dist 3.83 6.67 -51.35 -11.73 -6.86 7.67 9.87 -67.22 -14.10 -7.86 
  All Normal 3.78 5.46 -21.96 -10.80 -5.56 7.67 8.05 -32.66 -11.82 -5.92 
   T-dist 3.80 6.35 -39.64 -12.28 -6.86 7.70 9.29 -49.14 -14.34 -7.52 
  Historical  3.79 6.05 -32.64 -13.44 -6.98 7.75 8.89 -33.75 -14.52 -7.58 
 Zurich Index, French Normal 2.79 3.79 -13.20 -5.97 -3.42 5.69 5.49 -18.34 -6.65 -3.20 
   T-dist 2.83 4.57 -56.39 -7.79 -4.55 5.68 6.61 -41.37 -9.31 -4.93 
  All Normal 2.79 3.77 -20.86 -8.50 -4.23 5.70 5.49 -22.09 -8.94 -4.10 
   T-dist 2.81 4.28 -46.74 -9.06 -4.77 5.67 6.25 -29.30 -10.46 -5.06 
  Historical  2.80 4.04 -22.47 -9.89 -5.20 5.71 5.84 -23.12 -10.50 -5.14 
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